Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Dec;170(12):5901–5907. doi: 10.1128/jb.170.12.5901-5907.1988

Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12.

R Lahti 1, T Pitkäranta 1, E Valve 1, I Ilta 1, E Kukko-Kalske 1, J Heinonen 1
PMCID: PMC211699  PMID: 2848015

Abstract

Escherichia coli K-12 gene ppa encoding inorganic pyrophosphatase (PPase) was cloned and sequenced. The 5' end of the ppa mRNA was identified by primer extension mapping. A typical E. coli sigma 70 promoter was identified immediately upstream of the mRNA 5' end. The structural gene of ppa contains 528 base pairs, from which a 175-amino-acid translation product, Mr 19,572, was deduced. The deduced amino acid composition perfectly fitted with that of PPase as previously determined (P. Burton, D. C. Hall, and J. Josse, J. Biol. Chem. 245:4346-4351, 1970). Furthermore, the partial amino acid sequence (residues 1 to 108) of E. coli PPase determined by S. A. Cohen (Ph.D. thesis, University of Chicago, 1978) was the same as that deduced from the nucleotide sequence. This is the first report of the cloning of a PPase gene.

Full text

PDF
5901

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airas R. K., Cramer F. Pyrophosphate-caused inhibition of the aminoacylation of tRNA by the leucyl-tRNA synthetase from Neurospora crassa. Eur J Biochem. 1986 Oct 15;160(2):291–296. doi: 10.1111/j.1432-1033.1986.tb09970.x. [DOI] [PubMed] [Google Scholar]
  2. Bourguignon-Van Horen F., Brotcorn A., Caillet-Fauquet P., Diver W. P., Dohet C., Doubleday O. P., Lecomte P., Maenhaut-Michel G., Radman M. Conservation and diversification of genes by mismatch correction and SOS induction. Biochimie. 1982 Aug-Sep;64(8-9):559–564. doi: 10.1016/s0300-9084(82)80087-4. [DOI] [PubMed] [Google Scholar]
  3. Brendel V., Trifonov E. N. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. doi: 10.1093/nar/12.10.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burton P. M., Hall D. C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. IV. Chemical studies of protein structure. J Biol Chem. 1970 Sep 10;245(17):4346–4352. [PubMed] [Google Scholar]
  5. Cooperman B. S. The mechanism of action of yeast inorganic pyrophosphatase. Methods Enzymol. 1982;87:526–548. doi: 10.1016/s0076-6879(82)87030-4. [DOI] [PubMed] [Google Scholar]
  6. Csonka L. N., Clark A. J. Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol. 1980 Jul;143(1):529–530. doi: 10.1128/jb.143.1.529-530.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dignam J. D., Deutscher M. P. Aminoacyl-tRNA synthetase stimulatory factors and inorganic pyrophosphatase. Biochemistry. 1979 Jul 10;18(14):3165–3170. doi: 10.1021/bi00581a039. [DOI] [PubMed] [Google Scholar]
  9. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutterson N. I., Koshland D. E., Jr Replacement and amplification of bacterial genes with sequences altered in vitro. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4894–4898. doi: 10.1073/pnas.80.16.4894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heinonen J. K., Lahti R. J. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem. 1981 May 15;113(2):313–317. doi: 10.1016/0003-2697(81)90082-8. [DOI] [PubMed] [Google Scholar]
  14. Heinonen J., Kukko E. Partial inhibition of DNA synthesis gives rise to increase in the level of inorganic pyrophosphatase in the growing cells of Escherichia coli. Chem Biol Interact. 1977 Apr;17(1):113–116. doi: 10.1016/0009-2797(77)90076-x. [DOI] [PubMed] [Google Scholar]
  15. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  16. Herbomel P., Ninio J. Fidélité d'une réaction de polymérisation selon la proximité de l'équilibre. C R Seances Acad Sci D. 1980 Nov 24;291(11):881–884. [PubMed] [Google Scholar]
  17. Igo M. M., Losick R. Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol. 1986 Oct 20;191(4):615–624. doi: 10.1016/0022-2836(86)90449-3. [DOI] [PubMed] [Google Scholar]
  18. Kent R. B., Guterman S. K. Pyrophosphate inhibition of rho ATPase: a mechanism of coupling to RNA polymerase activity. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3992–3996. doi: 10.1073/pnas.79.13.3992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kukko-Kalske E., Heinonen J. Inorganic pyrophosphate and inorganic pyrophosphatase in Escherichia coli. Int J Biochem. 1985;17(5):575–580. doi: 10.1016/0020-711x(85)90288-5. [DOI] [PubMed] [Google Scholar]
  20. Lahti R., Jokinen M. Kinetic model for the action of the inorganic pyrophosphatase from Streptococcus faecalis. Biochemistry. 1985 Jul 2;24(14):3526–3530. doi: 10.1021/bi00335a021. [DOI] [PubMed] [Google Scholar]
  21. Lahti R. Microbial inorganic pyrophosphatases. Microbiol Rev. 1983 Jun;47(2):169–178. doi: 10.1128/mr.47.2.169-178.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Larsen J. E., Gerdes K., Light J., Molin S. Low-copy-number plasmid-cloning vectors amplifiable by derepression of an inserted foreign promoter. Gene. 1984 Apr;28(1):45–54. doi: 10.1016/0378-1119(84)90086-6. [DOI] [PubMed] [Google Scholar]
  23. Lecomte P., Doubleday O. P., Radman M. Evidence for an intermediate in DNA synthesis involving pyrophosphate exchange. A possible role in fidelity. J Mol Biol. 1986 Jun 20;189(4):643–652. doi: 10.1016/0022-2836(86)90494-8. [DOI] [PubMed] [Google Scholar]
  24. McNeil J. B., Smith M. Transcription initiation of the Saccharomyces cerevisiae iso-1-cytochrome c gene. Multiple, independent T-A-T-A sequences. J Mol Biol. 1986 Feb 5;187(3):363–378. doi: 10.1016/0022-2836(86)90439-0. [DOI] [PubMed] [Google Scholar]
  25. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  26. Peller L. On the free-energy changes in the synthesis and degradation of nucleic acids. Biochemistry. 1976 Jan 13;15(1):141–146. doi: 10.1021/bi00646a021. [DOI] [PubMed] [Google Scholar]
  27. Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. doi: 10.1146/annurev.bi.55.070186.002011. [DOI] [PubMed] [Google Scholar]
  28. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem. 1987;56:125–158. doi: 10.1146/annurev.bi.56.070187.001013. [DOI] [PubMed] [Google Scholar]
  31. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stormo G. D., Schneider T. D., Gold L. M. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 1982 May 11;10(9):2971–2996. doi: 10.1093/nar/10.9.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wong S. C., Hall D. C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 3. Molecular weight and physical properties of the enzyme and its subunits. J Biol Chem. 1970 Sep 10;245(17):4335–4345. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES