Abstract
The respiratory systems of the Bacillus cereus mother cell, forespore, and dormant and germinated spore were studied. The results indicated that the electron transfer capacity during sporulation, dormancy, and germination is related to the menaquinone levels in the membrane. During the maturation stages of sporulation (stages III to VI), forespore NADH oxidase activity underwent inactivation concomitant with a sevenfold decrease in the content of menaquinone and without major changes in the content of cytochromes and segment transfer activities. During the same period, NADH oxidase and menaquinone levels in the mother cell compartment steadily decreased to about 50% at the end of stage VI. Dormant spore membranes contained high levels of NADH dehydrogenase and cytochromes, but in the presence of NADH, they exhibited very low levels of O2 uptake and cytochrome reduction. Addition of menadione to dormant spore membranes restored NADH-dependent respiration and cytochrome reduction. During early germination, NADH-dependent respiration and cytochrome reduction were restored simultaneously with a fourfold increase in the menaquinone content; during germination, no significant changes in cytochrome levels or segment electron transfer activities of the respiratory system took place.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli A. J., Suehiro S., Sakiyama D., Takemoto J., Vivanco E., Lara J. C., Klute M. C. Release and recovery of forespores from Bacillus cereus. J Bacteriol. 1973 Sep;115(3):1159–1166. doi: 10.1128/jb.115.3.1159-1166.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergsma J., Meihuizen K. E., Van Oeveren W., Konings W. N. Restoration of NADH oxidation with menaquinones and menaquinone analogues in membrane vesicles from the menaquinone-deficient Bacillus subtilis aroD. Eur J Biochem. 1982 Jul;125(3):651–657. doi: 10.1111/j.1432-1033.1982.tb06732.x. [DOI] [PubMed] [Google Scholar]
- Escamilla J. E., Benito M. C. Respiratory system of vegetative and sporulating Bacillus cereus. J Bacteriol. 1984 Oct;160(1):473–477. doi: 10.1128/jb.160.1.473-477.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escamilla J. E., Ramírez R., Del-Arenal P., Aranda A. Respiratory systems of the Bacillus cereus mother cell and forespore. J Bacteriol. 1986 Aug;167(2):544–550. doi: 10.1128/jb.167.2.544-550.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J Bacteriol. 1963 Feb;85:451–460. doi: 10.1128/jb.85.2.451-460.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogarth C., Wilkinson B. J., Ellar D. J. Cyanide-resistant electron transport in sporulating Bacillus megaterium KM. Biochim Biophys Acta. 1977 Jul 7;461(1):109–123. doi: 10.1016/0005-2728(77)90073-1. [DOI] [PubMed] [Google Scholar]
- Kröger A., Dadák V. On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Eur J Biochem. 1969 Dec;11(2):328–340. doi: 10.1111/j.1432-1033.1969.tb00776.x. [DOI] [PubMed] [Google Scholar]
- Lang D. R., Felix J., Lundgren D. G. Development of a membrane-bound resiratory system prior to and during sporulation in Bacillus cereus and its relationship to membrane structure. J Bacteriol. 1972 Jun;110(3):968–977. doi: 10.1128/jb.110.3.968-977.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodenberg S., Steinberg W., Piper J., Nickerson K., Vary J., Epstein R., Halvorson H. O. Relationship between protein and ribonucleic acid synthesis during outgrowth of spores of Bacillus cereus. J Bacteriol. 1968 Aug;96(2):492–500. doi: 10.1128/jb.96.2.492-500.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow B., Setlow P. Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide linkage to protein in dormant and germinated spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol. 1977 Nov;132(2):444–452. doi: 10.1128/jb.132.2.444-452.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow B., Setlow P. Levels of oxidized and reduced pyridine nucleotides in dormant spores and during growth, sporulation, and spore germination of Bacillus megaterium. J Bacteriol. 1977 Feb;129(2):857–865. doi: 10.1128/jb.129.2.857-865.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow B., Setlow P. Most of the coenzyme A in dormant spores of Bacillus megaterium is in disulfide linkage to protein. Biochem Biophys Res Commun. 1977 Mar 7;75(1):45–50. doi: 10.1016/0006-291x(77)91286-4. [DOI] [PubMed] [Google Scholar]
- Wilkinson B. J., Ellar D. J., Scott I. R., Koncewicz M. A. Rapid, chloramphenicol-resistant, activation of membrane electron transport on germination of Bacillus spores. Nature. 1977 Mar 10;266(5598):174–176. doi: 10.1038/266174a0. [DOI] [PubMed] [Google Scholar]
