Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jan 1;104(1):9–18. doi: 10.1083/jcb.104.1.9

Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends

PMCID: PMC2117032  PMID: 3793763

Abstract

During the movement of chromosomes in anaphase, microtubules that extend between the kinetochores and the poles shorten. We sought to determine where subunits are lost from these microtubules during their shortening. Prophase or prometaphase cells on coverslips were injected with fluoresceinated tubulin and allowed to progress through mitosis. Immediately after the onset of anaphase, a bar-shaped beam of laser light was used to mark a domain on the kinetochore fibers by photobleaching a band, approximately 1.0 micron wide, across the spindle. In different cells, spindles were photobleached at varying distances from the chromosomes. Cells were allowed to continue in anaphase until the chromosomes had further separated. They were then lysed, fixed, and prepared for double-label immunofluorescence with an antibody to fluorescein that does not bind appreciably to bleached fluorescein, and with an antibody to tubulin. Photobleached domains of microtubules appeared as bands of reduced fluorescence in the anti- fluorescein image. However, the anti-tubulin labeling revealed that microtubules were present and continuous through the photobleached domains. In all cases, the chromosomes approached and invaded the bleached domain while the bleached domain itself remained stationary with respect to the near pole. These results demonstrate that the chromosomes move along stationary kinetochore microtubules and that depolymerization of these microtubules during anaphase takes place at the kinetochore. In contrast to the generally accepted older view that chromosomes are passive objects pulled by "traction fibers," we suggest that the kinetochore is an active participant in generating the motive force that propels the chromosome to the pole.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajer A. S. Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). 1. General principle. Cytobios. 1973 Nov;8(31):139–160. [PubMed] [Google Scholar]
  2. Begg D. A., Ellis G. W. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle. J Cell Biol. 1979 Aug;82(2):542–554. doi: 10.1083/jcb.82.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinkley B. R., Tousson A., Valdivia M. M. The kinetochore of mammalian chromosomes: structure and function in normal mitosis and aneuploidy. Basic Life Sci. 1985;36:243–267. doi: 10.1007/978-1-4613-2127-9_16. [DOI] [PubMed] [Google Scholar]
  4. Hill T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4404–4408. doi: 10.1073/pnas.82.13.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kreis T. E., Birchmeier W. Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins. Int Rev Cytol. 1982;75:209–214. doi: 10.1016/s0074-7696(08)61005-0. [DOI] [PubMed] [Google Scholar]
  6. Leslie R. J., Saxton W. M., Mitchison T. J., Neighbors B., Salmon E. D., McIntosh J. R. Assembly properties of fluorescein-labeled tubulin in vitro before and after fluorescence bleaching. J Cell Biol. 1984 Dec;99(6):2146–2156. doi: 10.1083/jcb.99.6.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Margolis R. L., Wilson L. Microtubule treadmills--possible molecular machinery. Nature. 1981 Oct 29;293(5835):705–711. doi: 10.1038/293705a0. [DOI] [PubMed] [Google Scholar]
  8. McIntosh J. R., Saxton W. M., Stemple D. L., Leslie R. J., Welsh M. J. Dynamics of tubulin and calmodulin in the mammalian mitotic spindle. Ann N Y Acad Sci. 1986;466:566–579. doi: 10.1111/j.1749-6632.1986.tb38433.x. [DOI] [PubMed] [Google Scholar]
  9. Mitchison T. J., Kirschner M. W. Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J Cell Biol. 1985 Sep;101(3):766–777. doi: 10.1083/jcb.101.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  11. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  12. Nicklas R. B., Kubai D. F., Hays T. S. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J Cell Biol. 1982 Oct;95(1):91–104. doi: 10.1083/jcb.95.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicklas R. B. Mitosis. Adv Cell Biol. 1971;2:225–297. doi: 10.1007/978-1-4615-9588-5_5. [DOI] [PubMed] [Google Scholar]
  14. Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
  15. Pratt M. M., Otter T., Salmon E. D. Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis). J Cell Biol. 1980 Sep;86(3):738–745. doi: 10.1083/jcb.86.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  17. Rieder C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma. 1981;84(1):145–158. doi: 10.1007/BF00293368. [DOI] [PubMed] [Google Scholar]
  18. Salmon E. D., Leslie R. J., Saxton W. M., Karow M. L., McIntosh J. R. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol. 1984 Dec;99(6):2165–2174. doi: 10.1083/jcb.99.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saxton W. M., Stemple D. L., Leslie R. J., Salmon E. D., Zavortink M., McIntosh J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 1984 Dec;99(6):2175–2186. doi: 10.1083/jcb.99.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scholey J. M., Porter M. E., Grissom P. M., McIntosh J. R. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature. 1985 Dec 5;318(6045):483–486. doi: 10.1038/318483a0. [DOI] [PubMed] [Google Scholar]
  21. Schulze E., Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol. 1986 Mar;102(3):1020–1031. doi: 10.1083/jcb.102.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Soltys B. J., Borisy G. G. Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J Cell Biol. 1985 May;100(5):1682–1689. doi: 10.1083/jcb.100.5.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
  25. Wadsworth P., Salmon E. D. Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching. J Cell Biol. 1986 Mar;102(3):1032–1038. doi: 10.1083/jcb.102.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES