Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jan 1;104(1):141–149. doi: 10.1083/jcb.104.1.141

Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion

PMCID: PMC2117034  PMID: 3793758

Abstract

Sperm-egg plasma membrane fusion during fertilization was studied using guinea pig gametes and mAbs to sperm surface antigens. The mAb, PH-30, strongly inhibited sperm-egg fusion in a concentration-dependent fashion. When zona-free eggs were inseminated with acrosome-reacted sperm preincubated in saturating (140 micrograms/ml) PH-30 mAb, the percent of eggs showing fusion was reduced 75%. The average number of sperm fused per egg was also reduced by 75%. In contrast a control mAb, PH-1, preincubated with sperm at 400 micrograms/ml, caused no inhibition. The PH-30 and PH-1 mAbs apparently recognize the same antigen but bind to two different determinants. Both mAbs immunoprecipitated the same two 125I-labeled polypeptides with Mr 60,000 (60 kD) and Mr 44,000 (44 kD). Boiling a detergent extract of sperm severely reduced the binding of PH-30 but had essentially no effect on the binding of PH-1, indicating that the two mAbs recognize different epitopes. Immunoelectron microscopy revealed that PH-30 mAb binding was restricted to the sperm posterior head surface and was absent from the equatorial region. The PH-30 and PH-1 mAbs did not bind to sperm from the testis, the caput, or the corpus epididymis. PH-30 mAb binding was first detectable on sperm from the proximal cauda epididymis, i.e., sperm at the developmental stage where fertilization competence appears. After purification by mAb affinity chromatography, the PH-30 protein retained antigenic activity, binding both the PH-30 and PH-1 mAbs. The purified protein showed two polypeptide bands of 60 and 44 kD on reducing SDS PAGE. The two polypeptides migrated further (to approximately 49 kD and approximately 33 kD) on nonreducing SDS PAGE, showing that they do not contain interchain disulfide bonds, but probably have intrachain disulfides. 44 kD appears not to be a proteolytic fragment of 60 kD because V8 protease digestion patterns did not reveal related peptide patterns from the 44- and 60-kD bands. In the absence of detergent, the purified protein precipitates, suggesting that either 60 or 44 kD could be an integral membrane polypeptide.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allore R. J., Barber B. H. Inter- and intramolecular disulfide bonding among lymphocyte plasma membrane proteins and glycoproteins. Mol Immunol. 1983 Apr;20(4):383–395. doi: 10.1016/0161-5890(83)90020-2. [DOI] [PubMed] [Google Scholar]
  2. Brown W. R., Barclay A. N., Sunderland C. A., Williams A. F. Identification of a glycophorin-like molecule at the cell surface of rat thymocytes. Nature. 1981 Feb 5;289(5797):456–460. doi: 10.1038/289456a0. [DOI] [PubMed] [Google Scholar]
  3. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  4. Cuasnicú P. S., González Echeverría F., Piazza A. D., Cameo M. S., Blaquier J. A. Antibodies against epididymal glycoproteins block fertilizing ability in rat. J Reprod Fertil. 1984 Nov;72(2):467–471. doi: 10.1530/jrf.0.0720467. [DOI] [PubMed] [Google Scholar]
  5. Dyson A. L., Orgebin-Crist M. C. Effect of hypophysectomy, castration and androgen replacement upon the fertilizing ability of rat epididymal spermatozoa. Endocrinology. 1973 Aug;93(2):391–402. doi: 10.1210/endo-93-2-391. [DOI] [PubMed] [Google Scholar]
  6. Florkiewicz R. Z., Rose J. K. A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science. 1984 Aug 17;225(4663):721–723. doi: 10.1126/science.6087454. [DOI] [PubMed] [Google Scholar]
  7. Gething M. J., Doms R. W., York D., White J. Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol. 1986 Jan;102(1):11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. I. Specific association of bindin with gel-phase phospholipid vesicles. J Cell Biol. 1985 Mar;100(3):794–799. doi: 10.1083/jcb.100.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro. J Cell Biol. 1985 Mar;100(3):800–806. doi: 10.1083/jcb.100.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green D. P. The induction of the acrosome reaction in guinea-pig sperm by the divalent metal cation ionophore A23187. J Cell Sci. 1978 Aug;32:137–151. doi: 10.1242/jcs.32.1.137. [DOI] [PubMed] [Google Scholar]
  11. Hoffer A. P., Greenberg J. The structure of the epididymis, efferent ductules and ductus deferens of the guinea pig: a light microscope study. Anat Rec. 1978 Mar;190(3):659–677. doi: 10.1002/ar.1091900304. [DOI] [PubMed] [Google Scholar]
  12. Horan A. H., Bedford J. M. Development of the fertilizing ability of spermatozoa in the epididymis of the Syrian hamster. J Reprod Fertil. 1972 Sep;30(3):417–423. doi: 10.1530/jrf.0.0300417. [DOI] [PubMed] [Google Scholar]
  13. Kondor-Koch C., Burke B., Garoff H. Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein. J Cell Biol. 1983 Sep;97(3):644–651. doi: 10.1083/jcb.97.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mescher M. F., Stallcup K. C., Sullivan C. P., Turkewitz A. P., Herrmann S. H. Purification of murine MHC antigens by monoclonal antibody affinity chromatography. Methods Enzymol. 1983;92:86–109. doi: 10.1016/0076-6879(83)92011-6. [DOI] [PubMed] [Google Scholar]
  15. Myles D. G., Primakoff P., Bellvé A. R. Surface domains of the guinea pig sperm defined with monoclonal antibodies. Cell. 1981 Feb;23(2):433–439. doi: 10.1016/0092-8674(81)90138-0. [DOI] [PubMed] [Google Scholar]
  16. Myles D. G., Primakoff P., Koppel D. E. A localized surface protein of guinea pig sperm exhibits free diffusion in its domain. J Cell Biol. 1984 May;98(5):1905–1909. doi: 10.1083/jcb.98.5.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noble A. G., Lee G. T., Sprague R., Parish M. L., Spear P. G. Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1. Virology. 1983 Aug;129(1):218–224. doi: 10.1016/0042-6822(83)90409-9. [DOI] [PubMed] [Google Scholar]
  18. Orvell C., Grandien M. The effects of monoclonal antibodies on biologic activities of structural proteins of Sendai virus. J Immunol. 1982 Dec;129(6):2779–2787. [PubMed] [Google Scholar]
  19. Orvell C. The reactions of monoclonal antibodies with structural proteins of mumps virus. J Immunol. 1984 May;132(5):2622–2629. [PubMed] [Google Scholar]
  20. Paterson R. G., Hiebert S. W., Lamb R. A. Expression at the cell surface of biologically active fusion and hemagglutinin/neuraminidase proteins of the paramyxovirus simian virus 5 from cloned cDNA. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7520–7524. doi: 10.1073/pnas.82.22.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Primakoff P., Myles D. G. A map of the guinea pig sperm surface constructed with monoclonal antibodies. Dev Biol. 1983 Aug;98(2):417–428. doi: 10.1016/0012-1606(83)90371-8. [DOI] [PubMed] [Google Scholar]
  22. Saling P. M., Irons G., Waibel R. Mouse sperm antigens that participate in fertilization. I. Inhibition of sperm fusion with the egg plasma membrane using monoclonal antibodies. Biol Reprod. 1985 Sep;33(2):515–526. doi: 10.1095/biolreprod33.2.515. [DOI] [PubMed] [Google Scholar]
  23. Samelson L. E. An analysis of the structure of the antigen receptor on a pigeon cytochrome c-specific T cell hybrid. J Immunol. 1985 Apr;134(4):2529–2535. [PubMed] [Google Scholar]
  24. Stern P. L., Willison K. R., Lennox E., Galfrè G., Milstein C., Secher D., Ziegler A. Monoclonal antibodies as probes for differentiation and tumor-associated antigens: a Forssman specificity on teratocarcinoma stem cells. Cell. 1978 Aug;14(4):775–783. doi: 10.1016/0092-8674(78)90333-1. [DOI] [PubMed] [Google Scholar]
  25. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys. 1983 May;16(2):151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  26. Yanagimachi R. Calcium requirement for sperm-egg fusion in mammals. Biol Reprod. 1978 Dec;19(5):949–958. doi: 10.1095/biolreprod19.5.949. [DOI] [PubMed] [Google Scholar]
  27. Yanagimachi R. Fertilization of guinea pig eggs in vitro. Anat Rec. 1972 Sep;174(1):9–19. doi: 10.1002/ar.1091740103. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES