Abstract
The alpha-aminoadipate (AA) pathway for the biosynthesis of lysine was investigated in the wild type and in lysine auxotrophs of the fission yeast Schizosaccharomyces pombe. Of the eight enzyme activities of the AA pathway that have been examined so far, six were present in the extract of wild-type S. pombe cells. Growth response to AA and accumulation studies indicated that three lysine auxotrophs, the lys2-97, lys4-95, and lys8-1 strains, were blocked before the AA step and that four lysine auxotrophs, the lys1-131, lys3-37, lys6-3, and lys7-2 strains, were blocked after the AA step. Among the mutants investigated, the lys2-97 mutant exhibited an enzyme lesion at the cis-homoaconitate hydratase step, the lys1-131 and lys7-2 mutants exhibited lesions at the AA reductase step, and lys3-37 exhibited a lesion at the saccharopine dehydrogenase step. These results demonstrated the basic similarity of the AA pathway in S. pombe and Saccharomyces cerevisiae.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhattacharjee J. K., Sinha A. K. Relationship among the genes, enzymes, and intermediates of the biosynthetic pathway of lysine in Saccharomyces. Mol Gen Genet. 1972;115(1):26–30. doi: 10.1007/BF00272214. [DOI] [PubMed] [Google Scholar]
- Bhattacharjee J. K. alpha-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol. 1985;12(2):131–151. doi: 10.3109/10408418509104427. [DOI] [PubMed] [Google Scholar]
- Borell C. W., Bhattacharjee J. K. Cloning and biochemical characterization of LYS5 gene of Saccharomyces cerevisiae. Curr Genet. 1988 Apr;13(4):299–304. doi: 10.1007/BF00424423. [DOI] [PubMed] [Google Scholar]
- Borell C. W., Urrestarazu L. A., Bhattacharjee J. K. Two unlinked lysine genes (LYS9 and LYS14) are required for the synthesis of saccharopine reductase in Saccharomyces cerevisiae. J Bacteriol. 1984 Jul;159(1):429–432. doi: 10.1128/jb.159.1.429-432.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D. Biosynthetic interrelations of lysine, diaminopimelic acid, and threonine in mutants of Escherichia coli. Nature. 1952 Mar 29;169(4300):534–536. doi: 10.1038/169534a0. [DOI] [PubMed] [Google Scholar]
- Fishel B., Amstutz H., Baum M., Carbon J., Clarke L. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol. 1988 Feb;8(2):754–763. doi: 10.1128/mcb.8.2.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaillardin C. M., Ribet A. M., Heslot H. Wild-type and mutant forms of homoisocitric dehydrogenase in the yeast Saccharomycopsis lipolytica. Eur J Biochem. 1982 Nov 15;128(2-3):489–494. doi: 10.1111/j.1432-1033.1982.tb06991.x. [DOI] [PubMed] [Google Scholar]
- Hogg R. W., Broquist H. P. Homocitrate formation in Neurospora crassa. Relation to lysine biosynthesis. J Biol Chem. 1968 Apr 25;243(8):1839–1845. [PubMed] [Google Scholar]
- Kinzel J. J., Winston M. K., Bhattacharjee J. K. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis. J Bacteriol. 1983 Jul;155(1):417–419. doi: 10.1128/jb.155.1.417-419.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohli J. Genetic nomenclature and gene list of the fission yeast Schizosaccharomyces pombe. Curr Genet. 1987;11(8):575–589. doi: 10.1007/BF00393919. [DOI] [PubMed] [Google Scholar]
- Käufer N. F., Simanis V., Nurse P. Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature. 1985 Nov 7;318(6041):78–80. doi: 10.1038/318078a0. [DOI] [PubMed] [Google Scholar]
- Ramos F., Dubois E., Piérard A. Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14. Eur J Biochem. 1988 Jan 15;171(1-2):171–176. doi: 10.1111/j.1432-1033.1988.tb13773.x. [DOI] [PubMed] [Google Scholar]
- Russell P., Nurse P. Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeasts divided. Cell. 1986 Jun 20;45(6):781–782. doi: 10.1016/0092-8674(86)90550-7. [DOI] [PubMed] [Google Scholar]
- Sinha A. K., Bhattacharjee J. K. Control of a lysine-biosynthetic step by two unlinked genes of Saccharomyces. Biochem Biophys Res Commun. 1970;39(6):1205–1210. doi: 10.1016/0006-291x(70)90689-3. [DOI] [PubMed] [Google Scholar]
- Storts D. R., Bhattacharjee J. K. Purification and properties of saccharopine dehydrogenase (glutamate forming) in the Saccharomyces cerevisiae lysine biosynthetic pathway. J Bacteriol. 1987 Jan;169(1):416–418. doi: 10.1128/jb.169.1.416-418.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strassman M., Ceci L. N. Enzymatic formation of cis-homoaconitic acid, an intermediate in lysine biosynthesis in yeast. J Biol Chem. 1966 Nov 25;241(22):5401–5407. [PubMed] [Google Scholar]
- Winston M. K., Bhattacharjee J. K. Biosynthetic and regulatory role of lys9 mutants of Saccharomyces cerevisiae. Curr Genet. 1987;11(5):393–398. doi: 10.1007/BF00378182. [DOI] [PubMed] [Google Scholar]