Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Jan;169(1):42–52. doi: 10.1128/jb.169.1.42-52.1987

Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system.

L S Jenkins, W D Nunn
PMCID: PMC211731  PMID: 3025185

Abstract

The structural organization and regulation of the genes involved in short-chain fatty acid degradation in Escherichia coli, referred to as the ato system, have been studied by a combination of classic genetic and recombinant DNA techniques. A plasmid containing a 6.2-kilobase region of the E. coli chromosome was able to complement mutations in the ato structural genes, atoA (acetyl-coenzyme A [CoA]:acetoacetyl [AA]-CoA transferase) and atoB (thiolase II), as well as mutations in the ato regulatory locus, atoC. Complementation studies performed with mutants defective in acetyl-CoA:AA-CoA transferase suggest that two loci, atoD and atoA, are required for the expression of functional AA-CoA transferase. The ato gene products were identified by in vitro transcription and translation and maxicell analysis as proteins of 48, 26.5, 26, and 42 kilodaltons for atoC, atoD, atoA, and atoB, respectively. In vitro and insertional mutagenesis of the ato hybrid plasmid indicated that the ato structural genes were arranged as an operon, with the order of transcription atoD-atoA-atoB. Although transcribed in the same direction as the atoDAB operon, the atoC gene appeared to use a promoter which was distinct from that used by the atoDAB operon. A delta atoC plasmid expressed the atoD, atoA, and atoB gene products only in strains containing a functional atoC gene. Although the exact mechanism of control was not evident from these studies, the data suggest that the atoC gene product is an activator which is required for the synthesis or activation of the atoDAB-encoded enzymes.

Full text

PDF
42

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. W., Hatfield G. W. Effects of promoter strengths and growth conditions on copy number of transcription-fusion vectors. J Biol Chem. 1984 Jun 25;259(12):7399–7403. [PubMed] [Google Scholar]
  2. Adler K., Beyreuther K., Fanning E., Geisler N., Gronenborn B., Klemm A., Müller-Hill B., Pfahl M., Schmitz A. How lac repressor binds to DNA. Nature. 1972 Jun 9;237(5354):322–327. doi: 10.1038/237322a0. [DOI] [PubMed] [Google Scholar]
  3. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black P. N., Kianian S. F., DiRusso C. C., Nunn W. D. Long-chain fatty acid transport in Escherichia coli. Cloning, mapping, and expression of the fadL gene. J Biol Chem. 1985 Feb 10;260(3):1780–1789. [PubMed] [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  6. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  7. DiRusso C. C., Nunn W. D. Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J Bacteriol. 1985 Feb;161(2):583–588. doi: 10.1128/jb.161.2.583-588.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duncombe G. R., Frerman F. E. Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli. Arch Biochem Biophys. 1976 Sep;176(1):159–170. doi: 10.1016/0003-9861(76)90152-1. [DOI] [PubMed] [Google Scholar]
  9. Fong J. C., Schulz H. On the rate-determining step of fatty acid oxidation in heart. Inhibition of fatty acid oxidation by 4-pentenoic acid. J Biol Chem. 1978 Oct 10;253(19):6917–6922. [PubMed] [Google Scholar]
  10. Helling R. B., Goodman H. M., Boyer H. W. Analysis of endonuclease R-EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J Virol. 1974 Nov;14(5):1235–1244. doi: 10.1128/jvi.14.5.1235-1244.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Humphreys G. O., Willshaw G. A., Anderson E. S. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta. 1975 Apr 2;383(4):457–463. doi: 10.1016/0005-2787(75)90318-4. [DOI] [PubMed] [Google Scholar]
  12. Ish-Horowicz D., Burke J. F. Rapid and efficient cosmid cloning. Nucleic Acids Res. 1981 Jul 10;9(13):2989–2998. doi: 10.1093/nar/9.13.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Maloy S. R., Nunn W. D. Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol. 1981 Feb;145(2):1110–1111. doi: 10.1128/jb.145.2.1110-1111.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  17. Pauli G., Overath P. ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur J Biochem. 1972 Sep 25;29(3):553–562. doi: 10.1111/j.1432-1033.1972.tb02021.x. [DOI] [PubMed] [Google Scholar]
  18. Pawar S., Schulz H. The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli. J Biol Chem. 1981 Apr 25;256(8):3894–3899. [PubMed] [Google Scholar]
  19. Radloff R., Bauer W., Vinograd J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci U S A. 1967 May;57(5):1514–1521. doi: 10.1073/pnas.57.5.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Salanitro J. P., Wegener W. S. Growth of Escherichia coli on short-chain fatty acids: nature of the uptake system. J Bacteriol. 1971 Nov;108(2):893–901. doi: 10.1128/jb.108.2.893-901.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sancar A., Hack A. M., Rupp W. D. Simple method for identification of plasmid-coded proteins. J Bacteriol. 1979 Jan;137(1):692–693. doi: 10.1128/jb.137.1.692-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schulz H. Metabolism of 4-pentenoic acid and inhibition of thiolase by metabolites of 4-pentenoic acid. Biochemistry. 1983 Apr 12;22(8):1827–1832. doi: 10.1021/bi00277a013. [DOI] [PubMed] [Google Scholar]
  23. Simons R. W., Egan P. A., Chute H. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol. 1980 May;142(2):621–632. doi: 10.1128/jb.142.2.621-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spratt S. K., Black P. N., Ragozzino M. M., Nunn W. D. Cloning, mapping, and expression of genes involved in the fatty acid-degradative multienzyme complex of Escherichia coli. J Bacteriol. 1984 May;158(2):535–542. doi: 10.1128/jb.158.2.535-542.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spratt S. K., Ginsburgh C. L., Nunn W. D. Isolation and genetic characterization of Escherichia coli mutants defective in propionate metabolism. J Bacteriol. 1981 Jun;146(3):1166–1169. doi: 10.1128/jb.146.3.1166-1169.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sramek S. J., Frerman F. E., Adams M. B. Sulfhydryl group reactivity in the Escherichia coli CoA transferase. Arch Biochem Biophys. 1977 Jun;181(2):516–524. doi: 10.1016/0003-9861(77)90258-2. [DOI] [PubMed] [Google Scholar]
  27. Sramek S. J., Frerman F. E. Escherichia coli coenzyme A-transferase: kinetics, catalytic pathway and structure. Arch Biochem Biophys. 1975 Nov;171(1):27–35. doi: 10.1016/0003-9861(75)90003-x. [DOI] [PubMed] [Google Scholar]
  28. Sramek S. J., Frerman F. E. Purification and properties of Escherichia coli coenzyme A-transferase. Arch Biochem Biophys. 1975 Nov;171(1):14–26. doi: 10.1016/0003-9861(75)90002-8. [DOI] [PubMed] [Google Scholar]
  29. Sramek S. J., Frerman F. E. Steady state kinetic mechanism of the Escherichia coli coenzyme A transferase. Arch Biochem Biophys. 1977 May;181(1):178–184. doi: 10.1016/0003-9861(77)90496-9. [DOI] [PubMed] [Google Scholar]
  30. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES