Abstract
Saccharomyces cerevisiae apurinic endonucleases E cochromatographed with activity against a DNA substrate containing urea residues. The urea-recognizing activity of endonuclease E was competitively inhibited by apurinic DNA, and the heat labilities of both activities were the same. The apparent VmaxS of endonuclease E for both substrates were about the same, while the apparent Km for urea-containing DNA was about threefold greater than that for apurinic DNA. These results were similar to those obtained previously with Escherichia coli exonuclease III (Y. Kow and S. Wallace, Proc. Natl. Acad. Sci. USA 82:8354-8358, 1985) and suggest that the ability to recognize urea residues may be a general property of apurinic endonucleases.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armel P. R., Wallace S. S. Apurinic endonucleases from Saccharomyces cerevisiae. Nucleic Acids Res. 1978 Sep;5(9):3347–3356. doi: 10.1093/nar/5.9.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armel P. R., Wallace S. S. DNA repair in Saccharomyces cerevisiae: purification and characterization of apurinic endonucleases. J Bacteriol. 1984 Dec;160(3):895–902. doi: 10.1128/jb.160.3.895-902.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breimer L. H. Urea--DNA glycosylase in mammalian cells. Biochemistry. 1983 Aug 30;22(18):4192–4197. doi: 10.1021/bi00287a005. [DOI] [PubMed] [Google Scholar]
- Breimer L., Lindahl T. A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues. Nucleic Acids Res. 1980 Dec 20;8(24):6199–6211. doi: 10.1093/nar/8.24.6199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demple B., Halbrook J., Linn S. Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J Bacteriol. 1983 Feb;153(2):1079–1082. doi: 10.1128/jb.153.2.1079-1082.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EKERT B., MONIER R. Structure of thymine hydroperoxide produced by x-irradiation. Nature. 1959 Sep 5;184:58–59. [PubMed] [Google Scholar]
- Futcher A. B., Morgan A. R. A novel assay for endonucleases acting at apurinic sites and its use in measuring AP endonuclease activity in repair-deficient mutants of Saccharomyces cerevisiae. Can J Biochem. 1979 Jun;57(6):932–937. doi: 10.1139/o79-113. [DOI] [PubMed] [Google Scholar]
- Ide H., Kow Y. W., Wallace S. S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 1985 Nov 25;13(22):8035–8052. doi: 10.1093/nar/13.22.8035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katcher H. L., Wallace S. S. Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry. 1983 Aug 16;22(17):4071–4081. doi: 10.1021/bi00286a013. [DOI] [PubMed] [Google Scholar]
- Kow Y. W., Wallace S. S. Exonuclease III recognizes urea residues in oxidized DNA. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8354–8358. doi: 10.1073/pnas.82.24.8354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
- Sammartano L. J., Tuveson R. W. Escherichia coli xthA mutants are sensitive to inactivation by broad-spectrum near-UV (300- to 400-nm) radiation. J Bacteriol. 1983 Nov;156(2):904–906. doi: 10.1128/jb.156.2.904-906.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace S. S. Detection and repair of DNA base damages produced by ionizing radiation. Environ Mutagen. 1983;5(5):769–788. doi: 10.1002/em.2860050514. [DOI] [PubMed] [Google Scholar]
