Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Jan;169(1):416–418. doi: 10.1128/jb.169.1.416-418.1987

Purification and properties of saccharopine dehydrogenase (glutamate forming) in the Saccharomyces cerevisiae lysine biosynthetic pathway.

D R Storts, J K Bhattacharjee
PMCID: PMC211784  PMID: 3098733

Abstract

Saccharopine dehydrogenase (glutamate forming) of the biosynthetic pathway of lysine in Saccharomyces cerevisiae was purified 1,122-fold by using acid precipitation, ammonium sulfate precipitation, DEAE-Sepharose, gel filtration, and Reactive Red-120 agarose chromatography. The enzyme exhibited a native molecular size of 69,000 daltons by gel filtration and consisted of a single 50,000-dalton polypeptide based upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was readily denatured by exposures to temperatures exceeding 46 degrees C. The pH optimum for the reverse reaction was 9.5. The apparent Kms for L-saccharopine and NAD+ were 2.32 and 0.054 mM, respectively. The enzyme was inhibited by mercuric chloride but not by carbonyl or metal complexing agents.

Full text

PDF
416

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhattacharjee J. K. alpha-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol. 1985;12(2):131–151. doi: 10.3109/10408418509104427. [DOI] [PubMed] [Google Scholar]
  3. Borell C. W., Urrestarazu L. A., Bhattacharjee J. K. Two unlinked lysine genes (LYS9 and LYS14) are required for the synthesis of saccharopine reductase in Saccharomyces cerevisiae. J Bacteriol. 1984 Jul;159(1):429–432. doi: 10.1128/jb.159.1.429-432.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Fjellstedt T. A., Ogur M. Effects of supersuppressor genes on enzymes controlling lysine biosynthesis in Saccharomyces. J Bacteriol. 1970 Jan;101(1):108–117. doi: 10.1128/jb.101.1.108-117.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones E. E., Broquist H. P. Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. 3. Aminoadipic semialdehyde-glutamate reductase. J Biol Chem. 1966 Jul 25;241(14):3430–3434. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae, edition 9. Microbiol Rev. 1985 Sep;49(3):181–213. doi: 10.1128/mr.49.3.181-213.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sinha A. K., Kurtz M., Bhattacharjee J. K. Effect of hydroxylysine on the biosynthesis of lysine in saccharomyces. J Bacteriol. 1971 Nov;108(2):715–719. doi: 10.1128/jb.108.2.715-719.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES