Abstract
Binding of Saccharomyces cerevisiae alpha-agglutinin to target a cells was assayed by agglutination inhibition and 125I-alpha-agglutinin binding. The assays showed characteristics of equilibrium binding, namely saturability, competability, and the establishment of a kinetic endpoint in the presence of free alpha-agglutinin and free receptor. The binding was heterogeneous, displaying strong binding (10(9) liters/mol) and a weaker interaction. There were about 2 X 10(4) strong binding sites per a cell. Denaturing gels displayed identical labeled species binding to the a cells in the weak and strong interactions. Furthermore, weakly bound material could subsequently bind tightly to fresh a cells, implying that the same species of alpha-agglutinin was bound in the two states.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair W. S., Hwang C., Goodenough U. W. Identification and visualization of the sexual agglutinin from the mating-type plus flagellar membrane of Chlamydomonas. Cell. 1983 May;33(1):183–193. doi: 10.1016/0092-8674(83)90347-1. [DOI] [PubMed] [Google Scholar]
- Balsamo J., Lilien J. Functional identification of three components which mediate tissue-type specific embryonic cell adhesion. Nature. 1974 Oct 11;251(5475):522–524. doi: 10.1038/251522a0. [DOI] [PubMed] [Google Scholar]
- Burkart W., Burger M. M. The contribution of the calcium-dependent interaction of aggregation factor molecules to recognition: a system providing additional specificity forces? J Supramol Struct Cell Biochem. 1981;16(2):179–182. doi: 10.1002/jsscb.1981.380160208. [DOI] [PubMed] [Google Scholar]
- Cole G. J., Loewy A., Glaser L. Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature. 1986 Apr 3;320(6061):445–447. doi: 10.1038/320445a0. [DOI] [PubMed] [Google Scholar]
- Crandall M. A., Brock T. D. Molecular basis of mating in the yeast hansenula wingei. Bacteriol Rev. 1968 Sep;32(3):139–163. doi: 10.1128/br.32.3.139-163.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M., Gallin W. J., Delouvée A., Cunningham B. A., Thiery J. P. Early epochal maps of two different cell adhesion molecules. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4384–4388. doi: 10.1073/pnas.80.14.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foucaud B., Reeb R., Sensenbrenner M., Gombos G. Kinetic and morphological analysis of the preferential adhesion of chick embryo neuronal cells to astroglial cells in culture. Exp Cell Res. 1982 Feb;137(2):285–294. doi: 10.1016/0014-4827(82)90029-5. [DOI] [PubMed] [Google Scholar]
- Gallin W. J., Edelman G. M., Cunningham B. A. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1038–1042. doi: 10.1073/pnas.80.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jumblatt J. E., Schlup V., Burger M. M. Cell-cell recognition: specific binding of Microciona sponge aggregation factor to homotypic cells and the role of calcium ions. Biochemistry. 1980 Mar 4;19(5):1038–1042. doi: 10.1021/bi00546a032. [DOI] [PubMed] [Google Scholar]
- Laroy K., Weeks G. Extraction of membrane factors that inhibit aggregation in Dictyostelium discoideum. J Cell Sci. 1982 Jun;55:277–286. doi: 10.1242/jcs.55.1.277. [DOI] [PubMed] [Google Scholar]
- Misevic G. N., Burger M. M. Reconstitution of high cell binding affinity of a marine sponge aggregation factor by cross-linking of small low affinity fragments into a large polyvalent polymer. J Biol Chem. 1986 Feb 25;261(6):2853–2859. [PubMed] [Google Scholar]
- Müller K., Gerisch G., Fromme I., Mayer H., Tsugita A. A membrane glycoprotein of aggregating Dictyostelium cells with the properties of contact sites. Eur J Biochem. 1979 Sep;99(2):419–426. doi: 10.1111/j.1432-1033.1979.tb13271.x. [DOI] [PubMed] [Google Scholar]
- Müller W. E., Zahn R. K., Kurelec B., Müller I., Uhlenbruck G., Vaith P. Aggregation of sponge cells. A novel mechanism of controlled intercellular adhesion, basing on the interrelation between glycosyltransferases and glycosidases. J Biol Chem. 1979 Feb 25;254(4):1280–1287. [PubMed] [Google Scholar]
- Pierce M., Ballou C. E. Cell-cell recognition in yeast. Characterization of the sexual agglutination factors from Saccharomyces kluyveri. J Biol Chem. 1983 Mar 25;258(6):3576–3582. [PubMed] [Google Scholar]
- Rando R. R., Bangerter F. W. Threshold effects on the lectin-mediated aggregation of synthetic glycolipid-containing liposomes. J Supramol Struct. 1979;11(3):295–309. doi: 10.1002/jss.400110304. [DOI] [PubMed] [Google Scholar]
- Ray J., Lerner R. A. A biologically active receptor for the carbohydrate-binding protein(s) of Dictyostelium discoideum. Cell. 1982 Jan;28(1):91–98. doi: 10.1016/0092-8674(82)90378-6. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Pierschbacher M. D. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986 Feb 28;44(4):517–518. doi: 10.1016/0092-8674(86)90259-x. [DOI] [PubMed] [Google Scholar]
- Rutz R., Lilien J. Functional characterization of an adhesive component from the embryonic chick neural retina. J Cell Sci. 1979 Apr;36:323–342. doi: 10.1242/jcs.36.1.323. [DOI] [PubMed] [Google Scholar]
- Sadoul R., Hirn M., Deagostini-Bazin H., Rougon G., Goridis C. Adult and embryonic mouse neural cell adhesion molecules have different binding properties. 1983 Jul 28-Aug 3Nature. 304(5924):347–349. doi: 10.1038/304347a0. [DOI] [PubMed] [Google Scholar]
- Shimoda C., Yanagishima N. Mating reaction in Saccharomyces cerevisiae. VIII. Mating-type-specific substances responsible for sexual cell agglutination. Antonie Van Leeuwenhoek. 1975;41(4):521–532. doi: 10.1007/BF02565094. [DOI] [PubMed] [Google Scholar]
- Takeichi M., Atsumi T., Yoshida C., Uno K., Okada T. S. Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites. Dev Biol. 1981 Oct 30;87(2):340–350. doi: 10.1016/0012-1606(81)90157-3. [DOI] [PubMed] [Google Scholar]
- Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977 Nov;75(2 Pt 1):464–474. doi: 10.1083/jcb.75.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor N. W., Orton W. L. Cooperation among the active binding sites in the sex-specific agglutinin from the yeast, Hansenula wingei. Biochemistry. 1971 May 25;10(11):2043–2049. doi: 10.1021/bi00787a012. [DOI] [PubMed] [Google Scholar]
- Taylor N. W., Tobin R. Sexual agglutination in yeast. IV. Minimum particle count per cell for fast-sedimenting 5-agglutinin. Arch Biochem Biophys. 1966 Aug;115(2):271–276. doi: 10.1016/0003-9861(66)90275-x. [DOI] [PubMed] [Google Scholar]
- Terrance K., Heller P., Wu Y. S., Lipke P. N. Identification of glycoprotein components of alpha-agglutinin, a cell adhesion protein from Saccharomyces cerevisiae. J Bacteriol. 1987 Feb;169(2):475–482. doi: 10.1128/jb.169.2.475-482.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terrance K., Lipke P. N. Sexual agglutination in Saccharomyces cerevisiae. J Bacteriol. 1981 Dec;148(3):889–896. doi: 10.1128/jb.148.3.889-896.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umbreit J., Roseman S. A requirement for reversible binding between aggregating embryonic cells before stable adhesion. J Biol Chem. 1975 Dec 25;250(24):9360–9368. [PubMed] [Google Scholar]
- Yamaguchi M., Yoshida K., Yanagishima N. Isolation and partial characterization of cytoplasmic alpha agglutination substance in the yeast Saccharomyces cerevisiae. FEBS Lett. 1982 Mar 8;139(1):125–129. doi: 10.1016/0014-5793(82)80502-4. [DOI] [PubMed] [Google Scholar]
- Yoshida K., HAGIYA M., Yanagishima N. Isolation and purification of the sexual agglutination substance of mating type a cells in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1085–1094. doi: 10.1016/0006-291x(76)90765-8. [DOI] [PubMed] [Google Scholar]


