Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Feb;169(2):519–525. doi: 10.1128/jb.169.2.519-525.1987

Regulation of Bacillus subtilis macrofiber twist development by ions: effects of magnesium and ammonium.

N H Mendelson, D Favre
PMCID: PMC211808  PMID: 3100502

Abstract

The steady-state twist of Bacillus subtilis macrofibers produced by growth in complex medium was found to vary as a function of the magnesium and ammonium concentrations. Four categories of macrofiber-producing strains that differed in their response to temperature regulation of twist were studied. Macrofibers were cultured in the complex medium TB used in previous experiments and in two derivative media, T (consisting of Bacto Tryptose), in which most strains produced left-handed structures, and Be (consisting of Bacto Beef Extract), in which right-handed macrofibers arose. In nearly all cases, increasing concentrations of magnesium led to the production of macrofibers with greater right-handed twist. Some strains unable to form right-handed structures as a function of temperature could be made to do so by the addition of magnesium. Inversion from right- to left-handedness in strain FJ7 induced by temperature shift-up was blocked by the addition of magnesium. The presence of magnesium during a high-temperature pulse did not block the establishment of "memory," although it delayed the initiation of the transient inversion following return to low temperature. The twist state of macrofibers grown without a magnesium supplement was not instantaneously affected by the addition of magnesium. Such fibers were, however, protected from lysozyme attack and associated relaxation motions. Lysozyme degradation of purified cell walls (both intact and lacking teichoic acid) was also blocked by the addition of magnesium. Ammonium ions influenced macrofiber twist development towards the left-hand end of the twist spectrum. Macrofiber twist produced in mixtures of magnesium and ammonium was strain and medium dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beveridge T. J., Murray R. G. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980 Feb;141(2):876–887. doi: 10.1128/jb.141.2.876-887.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doyle R. J., McDannel M. L., Streips U. N., Birdsell D. C., Young F. E. Polyelectrolyte nature of bacterial teichoic acids. J Bacteriol. 1974 May;118(2):606–615. doi: 10.1128/jb.118.2.606-615.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Favre D., Karamata D., Mendelson N. H. Temperature-pulse-induced "memory" in Bacillus subtilis macrofibers and a role for protein(s) in the left-handed-twist state. J Bacteriol. 1985 Dec;164(3):1141–1145. doi: 10.1128/jb.164.3.1141-1145.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Favre D., Mendelson N. H., Thwaites J. J. Relaxation motions induced in Bacillus subtilis macrofibres by cleavage of peptidoglycan. J Gen Microbiol. 1986 Aug;132(8):2377–2385. doi: 10.1099/00221287-132-8-2377. [DOI] [PubMed] [Google Scholar]
  5. Favre D., Thwaites J. J., Mendelson N. H. Kinetic studies of temperature-induced helix hand inversion in Bacillus subtilis macrofibers. J Bacteriol. 1985 Dec;164(3):1136–1140. doi: 10.1128/jb.164.3.1136-1140.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fein J. E., Rogers H. J. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J Bacteriol. 1976 Sep;127(3):1427–1442. doi: 10.1128/jb.127.3.1427-1442.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garrett A. J. The effect of magnesium ion deprivation on the synthesis of mucopeptide and its precursors in Bacillus subtilis. Biochem J. 1969 Nov;115(3):419–430. doi: 10.1042/bj1150419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heptinstall S., Archibald A. R., Baddiley J. Teichoic acids and membrane function in bacteria. Nature. 1970 Feb 7;225(5232):519–521. doi: 10.1038/225519a0. [DOI] [PubMed] [Google Scholar]
  9. Leduc M., Kasra R., van Heijenoort J. Induction and control of the autolytic system of Escherichia coli. J Bacteriol. 1982 Oct;152(1):26–34. doi: 10.1128/jb.152.1.26-34.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marquis R. E., Mayzel K., Carstensen E. L. Cation exchange in cell walls of gram-positive bacteria. Can J Microbiol. 1976 Jul;22(7):975–982. doi: 10.1139/m76-142. [DOI] [PubMed] [Google Scholar]
  11. Mendelson N. H., Favre D., Thwaites J. J. Twisted states of Bacillus subtilis macrofibers reflect structural states of the cell wall. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3562–3566. doi: 10.1073/pnas.81.11.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mendelson N. H., Gross J. D. Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J Bacteriol. 1967 Nov;94(5):1603–1608. doi: 10.1128/jb.94.5.1603-1608.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mendelson N. H. Helical Bacillus subtilis macrofibers: morphogenesis of a bacterial multicellular macroorganism. Proc Natl Acad Sci U S A. 1978 May;75(5):2478–2482. doi: 10.1073/pnas.75.5.2478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mendelson N. H. Helical growth of Bacillus subtilis: a new model of cell growth. Proc Natl Acad Sci U S A. 1976 May;73(5):1740–1744. doi: 10.1073/pnas.73.5.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mendelson N. H., Karamata D. Inversion of helix orientation in Bacillus subtilis macrofibers. J Bacteriol. 1982 Jul;151(1):450–454. doi: 10.1128/jb.151.1.450-454.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mendelson N. H., Thwaites J. J., Favre D., Surana U., Briehl M. M., Wolfe A. Factors contributing to helical shape determination and maintenance in Bacillus subtilis macrofibres. Ann Inst Pasteur Microbiol. 1985 Jan-Feb;136A(1):99–103. doi: 10.1016/s0769-2609(85)80029-6. [DOI] [PubMed] [Google Scholar]
  17. Raxin S. Reconstitution of Mycoplasma membranes. J Supramol Struct. 1974;2(5-6):670–681. doi: 10.1002/jss.400020512. [DOI] [PubMed] [Google Scholar]
  18. Rayman M. K., MacLeod R. A. Interaction of Mg-2+ with peptidoglycan and its relation to the prevention of lysis of a marine pseudomonad. J Bacteriol. 1975 May;122(2):650–659. doi: 10.1128/jb.122.2.650-659.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reaveley D. A., Rogers H. J. Some enzymic activities and chemical properties of the mesosomes and cytoplasmic membranes of Bacillus licheniformis 6346. Biochem J. 1969 Jun;113(1):67–79. doi: 10.1042/bj1130067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rogers H. J., Thurman P. F., Buxton R. S. Magnesium and anion requirements of rodB mutants of Bacillus subtilis. J Bacteriol. 1976 Feb;125(2):556–564. doi: 10.1128/jb.125.2.556-564.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SMOLELIS A. N., HARTSELL S. E. Factors affecting the lytic activity of lysozyme. J Bacteriol. 1952 May;63(5):665–674. doi: 10.1128/jb.63.5.665-674.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saxe C. L., 3rd, Mendelson N. H. Morphological and genetic characterization of a bacteriophage-resistant Bacillus subtilis macrofiber-producing strain. J Bacteriol. 1984 Jan;157(1):109–114. doi: 10.1128/jb.157.1.109-114.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yang M. Y., Ferrari E., Henner D. J. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J Bacteriol. 1984 Oct;160(1):15–21. doi: 10.1128/jb.160.1.15-21.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES