Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Feb;169(2):844–848. doi: 10.1128/jb.169.2.844-848.1987

Cell-density-dependent killing of Myxococcus xanthus by autocide AMV.

I Gelvan, M Varon, E Rosenberg
PMCID: PMC211856  PMID: 3100506

Abstract

Autocide AMV of Myxococcus xanthus was purified and identified as phosphatidylethanolamine. Alkaline hydrolysis of AMV yielded a high proportion of mono- and diunsaturated fatty acids. The bactericidal activity of AMV on M. xanthus depended upon the density of target cells: the greater the cell density, the greater the killing by AMV. For example, at 2 U of AMV per ml, 0, 50, and 99% killing was measured with 2 X 10(4), 2 X 10(5), and 2 X 10(7) target cells per ml, respectively. The cell-density-dependent activity of AMV was also observed on solid medium. Studies with model lipid compounds suggest that the inhibitory activity of AMV is due to the fatty acid moiety, released from phosphatidylethanolamine by the concerted (enzymatic) activity of many cells. Mutants of M. xanthus selected for resistance to AMI (a mixture of fatty acids) were also resistant to AMV. The possible role of AMV in developmental lysis is discussed.

Full text

PDF
844

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dworkin M., Kaiser D. Cell interactions in myxobacterial growth and development. Science. 1985 Oct 4;230(4721):18–24. doi: 10.1126/science.3929384. [DOI] [PubMed] [Google Scholar]
  2. Kupfer D., Zusman D. R. Changes in cell surface hydrophobicity of Myxococcus xanthus are correlated with sporulation-related events in the developmental program. J Bacteriol. 1984 Aug;159(2):776–779. doi: 10.1128/jb.159.2.776-779.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Orndorff P. E., Dworkin M. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J Bacteriol. 1980 Feb;141(2):914–927. doi: 10.1128/jb.141.2.914-927.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rosenberg E., Keller K. H., Dworkin M. Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol. 1977 Feb;129(2):770–777. doi: 10.1128/jb.129.2.770-777.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Shimkets L. J., Dworkin M. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev Biol. 1981 May;84(1):51–60. doi: 10.1016/0012-1606(81)90369-9. [DOI] [PubMed] [Google Scholar]
  7. Sorhaug T. Glycerol ester hydrolase, lipase, of Myxococcus xanthus FB. Can J Microbiol. 1974 Apr;20(4):611–615. [PubMed] [Google Scholar]
  8. Varon M., Cohen S., Rosenberg E. Autocides produced by Myxococcus xanthus. J Bacteriol. 1984 Dec;160(3):1146–1150. doi: 10.1128/jb.160.3.1146-1150.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Varon M., Tietz A., Rosenberg E. Myxococcus xanthus autocide AMI. J Bacteriol. 1986 Jul;167(1):356–361. doi: 10.1128/jb.167.1.356-361.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wireman J. W., Dworkin M. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol. 1977 Feb;129(2):798–802. doi: 10.1128/jb.129.2.798-802.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wireman J. W., Dworkin M. Morphogenesis and developmental interactions in myxobacteria. Science. 1975 Aug 15;189(4202):516–523. doi: 10.1126/science.806967. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES