Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Feb;169(2):897–899. doi: 10.1128/jb.169.2.897-899.1987

Evidence for regulation of gluconeogenesis by the fructose phosphotransferase system in Salmonella typhimurium.

A M Chin, B U Feucht, M H Saier Jr
PMCID: PMC211866  PMID: 3542978

Abstract

A genetic locus designated fruR, previously mapped to min 3 on the Salmonella typhimurium chromosome, gave rise to constitutive expression of the fructose (fru) regulon and pleiotropically prevented growth on all Krebs cycle intermediates. Regulatory effects of fruR were independent of cyclic AMP and its receptor protein and did not prevent uptake of Krebs cycle intermediates. Instead, the phosphotransferase system appeared to regulate gluconeogenesis by controlling the activities of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase.

Full text

PDF
897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brice C. B., Kornberg H. L. Location on the chromosome of Escherichia coli of a gene specifying phosphopyruvate synthase activity. Biochim Biophys Acta. 1967 Mar 22;136(2):412–414. doi: 10.1016/0304-4165(67)90094-3. [DOI] [PubMed] [Google Scholar]
  2. Calvo J. M., Goodman M., Salgo M., Capes N. Salmonella locus affecting phosphoenolpyruvate synthase activity identified by a deletion analysis. J Bacteriol. 1971 Apr;106(1):286–288. doi: 10.1128/jb.106.1.286-288.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chin A. M., Sutrina S., Feldheim D. A., Saier M. H., Jr Genetic expression of enzyme I activity of the phosphoenolpyruvate:sugar phosphotransferase system in ptsHI deletion strains of Salmonella typhimurium. J Bacteriol. 1987 Feb;169(2):894–896. doi: 10.1128/jb.169.2.894-896.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fraenkel D. G. The phosphoenolpyruvate-initiated pathway of fructose metabolism in Escherichia coli. J Biol Chem. 1968 Dec 25;243(24):6458–6463. [PubMed] [Google Scholar]
  5. Hartman P. E. Some improved methods in P22 transduction. Genetics. 1974 Apr;76(4):625–631. doi: 10.1093/genetics/76.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nelson S. O., Scholte B. J., Postma P. W. Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium. J Bacteriol. 1982 May;150(2):604–615. doi: 10.1128/jb.150.2.604-615.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Postma P. W., Lengeler J. W. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev. 1985 Sep;49(3):232–269. doi: 10.1128/mr.49.3.232-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reiner A. M. Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J Bacteriol. 1977 Oct;132(1):166–173. doi: 10.1128/jb.132.1.166-173.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Saier M. H., Jr, Feucht B. U. Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. J Biol Chem. 1975 Sep 10;250(17):7078–7080. [PubMed] [Google Scholar]
  10. Saier M. H., Jr, Grenier F. C., Lee C. A., Waygood E. B. Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Cell Biochem. 1985;27(1):43–56. doi: 10.1002/jcb.240270106. [DOI] [PubMed] [Google Scholar]
  11. Saier M. H., Jr, Simoni R. D., Roseman S. The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system. J Biol Chem. 1970 Nov 10;245(21):5870–5873. [PubMed] [Google Scholar]
  12. Simoni R. D., Roseman S., Saier M. H., Jr Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem. 1976 Nov 10;251(21):6584–6597. [PubMed] [Google Scholar]
  13. Wild J., Kłopotowski T. Insensitivity of D-amino acid dehydrogenase synthesis to catabolic repression in dadR mutants of Salmonella typhimurium. Mol Gen Genet. 1975;136(1):63–73. doi: 10.1007/BF00275449. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES