Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Jan 1;173(1):167–180. doi: 10.1084/jem.173.1.167

Successful engraftment of human postnatal thymus in severe combined immune deficient (SCID) mice: differential engraftment of thymic components with irradiation versus anti-asialo GM-1 immunosuppressive regimens

PMCID: PMC2118746  PMID: 1985120

Abstract

To develop a model of human thymus growth in vivo, we have implanted postnatal human thymus under the renal capsule of severe combined immune deficient (SCID) mice and assayed for graft survival and graft characteristics 1-3 mo after engraftment. Three groups of SCID mice were engrafted with postnatal human thymus: untreated SCID mice, SCID mice pretreated with 400 cGy of gamma irradiation 1-5 d before engraftment, and SCID mice treated with intraperitoneal anti-asialo GM- 1 antiserum every 4-5 d during engraftment. In the untreated group of SCID mice, only 37% of grafts survived and consisted of human thymic microenvironment components and human immature thymocytes. Irradiation of SCID mice before engraftment improved survival of human thymic grafts to 83%, but these grafts were largely devoid of thymocytes and contained only thymic microenvironment components with large numbers of thymic macrophages. Treatment of SCID mice with anti-asialo GM-1 antiserum throughout the engraftment period also promoted human thymus engraftment (70%) and induced SCID B cell Ig production (SCID[Ig+]) in 38% of animals. In SCID(Ig-) anti-asialo GM-1-treated mice, the human thymic grafts were similar in content to those in untreated SCID mice. However, in anti-asialo GM-1-treated animals with grafts that became SCID(Ig+), all animals were found to have mouse-human chimeric grafts in that the human thymic microenvironment (human fibroblasts, thymic epithelium, vessels) was colonized by murine T cells. These data demonstrate that human postnatal thymus will grow as xenografts in SCID mice, and that the components of human thymus that engraft are dependent on the immunosuppressive regimen used in recipient mice. A striking finding in this study was the induction of T and B lymphopoiesis in SCID mice by abrogation of NK cell activity with in vivo anti-asialo GM-1 treatment. These data strongly suggest that asialo GM-1+ NK cells and/or macrophages play a role in mediation of suppression of lymphopoiesis in SCID mice.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins B., Mueller C., Okada C. Y., Reichert R. A., Weissman I. L., Spangrude G. J. Early events in T-cell maturation. Annu Rev Immunol. 1987;5:325–365. doi: 10.1146/annurev.iy.05.040187.001545. [DOI] [PubMed] [Google Scholar]
  2. Amiot M., Bernard A., Tran H. C., Leca G., Kanellopoulos J. M., Boumsell L. The human cell surface glycoprotein complex (gp 120,200) recognized by monoclonal antibody K20 is a component binding to phytohaemagglutinin on T cells. Scand J Immunol. 1986 Jan;23(1):109–118. doi: 10.1111/j.1365-3083.1986.tb01948.x. [DOI] [PubMed] [Google Scholar]
  3. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  4. Bosma G. C., Fried M., Custer R. P., Carroll A., Gibson D. M., Bosma M. J. Evidence of functional lymphocytes in some (leaky) scid mice. J Exp Med. 1988 Mar 1;167(3):1016–1033. doi: 10.1084/jem.167.3.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner M. B., McLean J., Dialynas D. P., Strominger J. L., Smith J. A., Owen F. L., Seidman J. G., Ip S., Rosen F., Krangel M. S. Identification of a putative second T-cell receptor. Nature. 1986 Jul 10;322(6075):145–149. doi: 10.1038/322145a0. [DOI] [PubMed] [Google Scholar]
  6. Brenner M. B., McLean J., Scheft H., Warnke R. A., Jones N., Strominger J. L. Characterization and expression of the human alpha beta T cell receptor by using a framework monoclonal antibody. J Immunol. 1987 Mar 1;138(5):1502–1509. [PubMed] [Google Scholar]
  7. Campana D., Janossy G., Coustan-Smith E., Amlot P. L., Tian W. T., Ip S., Wong L. The expression of T cell receptor-associated proteins during T cell ontogeny in man. J Immunol. 1989 Jan 1;142(1):57–66. [PubMed] [Google Scholar]
  8. Carroll A. M., Bosma M. J. Detection and characterization of functional T cells in mice with severe combined immune deficiency. Eur J Immunol. 1988 Dec;18(12):1965–1971. doi: 10.1002/eji.1830181215. [DOI] [PubMed] [Google Scholar]
  9. Carroll A. M., Hardy R. R., Bosma M. J. Occurrence of mature B (IgM+, B220+) and T (CD3+) lymphocytes in scid mice. J Immunol. 1989 Aug 15;143(4):1087–1093. [PubMed] [Google Scholar]
  10. Custer R. P., Bosma G. C., Bosma M. J. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol. 1985 Sep;120(3):464–477. [PMC free article] [PubMed] [Google Scholar]
  11. Dalchau R., Kirkley J., Fabre J. W. Monoclonal antibody to a human leukocyte-specific membrane glycoprotein probably homologous to the leukocyte-common (L-C) antigen of the rat. Eur J Immunol. 1980 Oct;10(10):737–744. doi: 10.1002/eji.1830101003. [DOI] [PubMed] [Google Scholar]
  12. De la Hera A., Toribio M. L., Marquez C., Marcos M. A., Cabrero E., Martinez-A C. Differentiation of human mature thymocytes: existence of a T3+4-8- intermediate stage. Eur J Immunol. 1986 Jun;16(6):653–658. doi: 10.1002/eji.1830160611. [DOI] [PubMed] [Google Scholar]
  13. Denning S. M., Kurtzberg J., Leslie D. S., Haynes B. F. Human postnatal CD4- CD8- CD3- thymic T cell precursors differentiate in vitro into T cell receptor delta-bearing cells. J Immunol. 1989 May 1;142(9):2988–2997. [PubMed] [Google Scholar]
  14. Dorshkind K., Keller G. M., Phillips R. A., Miller R. G., Bosma G. C., O'Toole M., Bosma M. J. Functional status of cells from lymphoid and myeloid tissues in mice with severe combined immunodeficiency disease. J Immunol. 1984 Apr;132(4):1804–1808. [PubMed] [Google Scholar]
  15. Dorshkind K., Pollack S. B., Bosma M. J., Phillips R. A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol. 1985 Jun;134(6):3798–3801. [PubMed] [Google Scholar]
  16. Fowlkes B. J., Edison L., Mathieson B. J., Chused T. M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J Exp Med. 1985 Sep 1;162(3):802–822. doi: 10.1084/jem.162.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fulop G. M., Phillips R. A. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients. J Immunol. 1986 Jun 15;136(12):4438–4443. [PubMed] [Google Scholar]
  18. Hackett J., Jr, Bosma G. C., Bosma M. J., Bennett M., Kumar V. Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc Natl Acad Sci U S A. 1986 May;83(10):3427–3431. doi: 10.1073/pnas.83.10.3427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haynes B. F., Denning S. M., Le P. T., Singer K. H. Human intrathymic T cell differentiation. Semin Immunol. 1990 Jan;2(1):67–77. [PubMed] [Google Scholar]
  20. Haynes B. F., Denning S. M., Singer K. H., Kurtzberg J. Ontogeny of T-cell precursors: a model for the initial stages of human T-cell development. Immunol Today. 1989 Mar;10(3):87–91. doi: 10.1016/0167-5699(89)90232-6. [DOI] [PubMed] [Google Scholar]
  21. Haynes B. F., Eisenbarth G. S., Fauci A. S. Human lymphocyte antigens: production of a monoclonal antibody that defines functional thymus-derived lymphocyte subsets. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5829–5833. doi: 10.1073/pnas.76.11.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Haynes B. F., Harden E. A., Telen M. J., Hemler M. E., Strominger J. L., Palker T. J., Scearce R. M., Eisenbarth G. S. Differentiation of human T lymphocytes. I. Acquisition of a novel human cell surface protein (p80) during normal intrathymic T cell maturation. J Immunol. 1983 Sep;131(3):1195–1200. [PubMed] [Google Scholar]
  23. Haynes B. F., Hensley L. L., Jegasothy B. V. Phenotypic characterization of skin-infiltrating T cells in cutaneous T-cell lymphoma: comparison with benign cutaneous T-cell infiltrates. Blood. 1982 Aug;60(2):463–473. [PubMed] [Google Scholar]
  24. Haynes B. F., Reisner E. G., Hemler M. E., Strominger J. L., Eisenbarth G. S. Description of monoclonal antibody defining an HLA allotypic determinant that includes specificities within the B5 cross-reacting group. Hum Immunol. 1982 Jul;4(4):273–285. doi: 10.1016/0198-8859(82)90001-5. [DOI] [PubMed] [Google Scholar]
  25. Haynes B. F., Robert-Guroff M., Metzgar R. S., Franchini G., Kalyanaraman V. S., Palker T. J., Gallo R. C. Monoclonal antibody against human T cell leukemia virus p19 defines a human thymic epithelial antigen acquired during ontogeny. J Exp Med. 1983 Mar 1;157(3):907–920. doi: 10.1084/jem.157.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Haynes B. F., Scearce R. M., Lobach D. F., Hensley L. L. Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Exp Med. 1984 Apr 1;159(4):1149–1168. doi: 10.1084/jem.159.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Haynes B. F., Shimizu K., Eisenbarth G. S. Identification of human and rodent thymic epithelium using tetanus toxin and monoclonal antibody A2B5. J Clin Invest. 1983 Jan;71(1):9–14. doi: 10.1172/JCI110755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Haynes B. F., Singer K. H., Denning S. M., Martin M. E. Analysis of expression of CD2, CD3, and T cell antigen receptor molecules during early human fetal thymic development. J Immunol. 1988 Dec 1;141(11):3776–3784. [PubMed] [Google Scholar]
  29. Haynes B. F., Telen M. J., Hale L. P., Denning S. M. CD44--a molecule involved in leukocyte adherence and T-cell activation. Immunol Today. 1989 Dec;10(12):423–428. doi: 10.1016/0167-5699(89)90040-6. [DOI] [PubMed] [Google Scholar]
  30. Haynes B. F. The human thymic microenvironment. Adv Immunol. 1984;36:87–142. doi: 10.1016/s0065-2776(08)60900-1. [DOI] [PubMed] [Google Scholar]
  31. Hemler M. E. Adhesive protein receptors on hematopoietic cells. Immunol Today. 1988 Apr;9(4):109–113. doi: 10.1016/0167-5699(88)91280-7. [DOI] [PubMed] [Google Scholar]
  32. Hochman P. S., Cudkowicz G., Dausset J. Decline of natural killer cell activity in sublethally irradiated mice. J Natl Cancer Inst. 1978 Jul;61(1):265–268. doi: 10.1093/jnci/61.1.265. [DOI] [PubMed] [Google Scholar]
  33. Iwasaki A., Yoshikai Y., Sakumoto M., Himeno K., Yuuki H., Kumamoto M., Sueishi K., Nomoto K. Sequential appearance of host-derived T cell subsets during differentiation in nude mice grafted with rat fetal thymus. J Immunol. 1990 Jul 1;145(1):28–35. [PubMed] [Google Scholar]
  34. Kubo R. T., Born W., Kappler J. W., Marrack P., Pigeon M. Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors. J Immunol. 1989 Apr 15;142(8):2736–2742. [PubMed] [Google Scholar]
  35. Kurtzberg J., Denning S. M., Nycum L. M., Singer K. H., Haynes B. F. Immature human thymocytes can be driven to differentiate into nonlymphoid lineages by cytokines from thymic epithelial cells. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7575–7579. doi: 10.1073/pnas.86.19.7575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lampson L. A., Levy R. Two populations of Ia-like molecules on a human B cell line. J Immunol. 1980 Jul;125(1):293–299. [PubMed] [Google Scholar]
  37. Lauzon R. J., Siminovitch K. A., Fulop G. M., Phillips R. A., Roder J. C. An expanded population of natural killer cells in mice with severe combined immunodeficiency (SCID) lack rearrangement and expression of T cell receptor genes. J Exp Med. 1986 Nov 1;164(5):1797–1802. doi: 10.1084/jem.164.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Le A. X., Bernhard E. J., Holterman M. J., Strub S., Parham P., Lacy E., Engelhard V. H. Cytotoxic T cell responses in HLA-A2.1 transgenic mice. Recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J Immunol. 1989 Feb 15;142(4):1366–1371. [PubMed] [Google Scholar]
  39. Ledbetter J. A., Evans R. L., Lipinski M., Cunningham-Rundles C., Good R. A., Herzenberg L. A. Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and cytotoxic/suppressor subpopulations in mouse and man. J Exp Med. 1981 Feb 1;153(2):310–323. doi: 10.1084/jem.153.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lobach D. F., Scearce R. M., Haynes B. F. The human thymic microenvironment. Phenotypic characterization of Hassall's bodies with the use of monoclonal antibodies. J Immunol. 1985 Jan;134(1):250–257. [PubMed] [Google Scholar]
  42. Marrack P., Kappler J. The T-cell repertoire for antigen and MHC. Immunol Today. 1988 Oct;9(10):308–315. doi: 10.1016/0167-5699(88)91324-2. [DOI] [PubMed] [Google Scholar]
  43. McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 Sep 23;241(4873):1632–1639. doi: 10.1126/science.241.4873.1632. [DOI] [PubMed] [Google Scholar]
  44. McFarland E. J., Scearce R. M., Haynes B. F. The human thymic microenvironment: cortical thymic epithelium is an antigenically distinct region of the thymic microenvironment. J Immunol. 1984 Sep;133(3):1241–1249. [PubMed] [Google Scholar]
  45. McMichael A. J., Pilch J. R., Galfré G., Mason D. Y., Fabre J. W., Milstein C. A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol. 1979 Mar;9(3):205–210. doi: 10.1002/eji.1830090307. [DOI] [PubMed] [Google Scholar]
  46. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988 Sep 15;335(6187):256–259. doi: 10.1038/335256a0. [DOI] [PubMed] [Google Scholar]
  47. Murphy W. J., Kumar V., Bennett M. Natural killer cells activated with interleukin 2 in vitro can be adoptively transferred and mediate hematopoietic histocompatibility-1 antigen-specific bone marrow rejection in vivo. Eur J Immunol. 1990 Aug;20(8):1729–1734. doi: 10.1002/eji.1830200816. [DOI] [PubMed] [Google Scholar]
  48. Murphy W. J., Kumar V., Cope J. C., Bennett M. An absence of T cells in murine bone marrow allografts leads to an increased susceptibility to rejection by natural killer cells and T cells. J Immunol. 1990 May 1;144(9):3305–3311. [PubMed] [Google Scholar]
  49. Namikawa R., Weilbaecher K. N., Kaneshima H., Yee E. J., McCune J. M. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990 Oct 1;172(4):1055–1063. doi: 10.1084/jem.172.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Papiernik M., Lepault F., Pontoux C. Synergistic effect of colony-stimulating factors and IL-2 on prothymocyte proliferation linked to the maturation of macrophage/dendritic cells within L3T4-Lyt-2-Ia-Mac- cells. J Immunol. 1988 Mar 1;140(5):1431–1434. [PubMed] [Google Scholar]
  51. Schuler W., Weiler I. J., Schuler A., Phillips R. A., Rosenberg N., Mak T. W., Kearney J. F., Perry R. P., Bosma M. J. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell. 1986 Sep 26;46(7):963–972. doi: 10.1016/0092-8674(86)90695-1. [DOI] [PubMed] [Google Scholar]
  52. Sentman C. L., Hackett J., Jr, Kumar V., Bennett M. Identification of a subset of murine natural killer cells that mediates rejection of Hh-1d but not Hh-1b bone marrow grafts. J Exp Med. 1989 Jul 1;170(1):191–202. doi: 10.1084/jem.170.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Smith S. H., Brown M. H., Rowe D., Callard R. E., Beverley P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed] [Google Scholar]
  54. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  55. Strominger J. L. Developmental biology of T cell receptors. Science. 1989 May 26;244(4907):943–950. doi: 10.1126/science.2658058. [DOI] [PubMed] [Google Scholar]
  56. Wiltrout R. H., Santoni A., Peterson E. S., Knott D. C., Overton W. R., Herberman R. B., Holden H. T. Reactivity of anti-asialo GM1 serum with tumoricidal and non-tumoricidal mouse macrophages. J Leukoc Biol. 1985 May;37(5):597–614. doi: 10.1002/jlb.37.5.597. [DOI] [PubMed] [Google Scholar]
  57. von Boehmer H. Developmental biology of T cells in T cell-receptor transgenic mice. Annu Rev Immunol. 1990;8:531–556. doi: 10.1146/annurev.iy.08.040190.002531. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES