Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Jan 1;173(1):49–54. doi: 10.1084/jem.173.1.49

A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva

PMCID: PMC2118755  PMID: 1985126

Abstract

To development a reliable murine model of Leishmania braziliensis braziliensis infection, parasites were injected into BALB/c mice in the presence of phlebotomine sand fly salivary gland lysates, which have previously been shown to greatly increase the infectivity of L. major in mice. When injected with salivary gland lysates, L. braziliensis braziliensis produced progressively enlarging cutaneous nodules, containing many macrophages filled with Leishmania amastigotes. In contrast, L. braziliensis injected without gland extracts produced small and rapidly regressing lesions. Isoenzyme analysis, monoclonal antibodies, and the polymerase chain reaction with L. braziliensis- specific oligonucleotide primers and probes confirmed that parasites causing the lesions were L. braziliensis.

Full Text

The Full Text of this article is available as a PDF (742.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade Z. A., Reed S. G., Roters S. B., Sadigursky M. Immunopathology of experimental cutaneous leishmaniasis. Am J Pathol. 1984 Jan;114(1):137–148. [PMC free article] [PubMed] [Google Scholar]
  2. Gorczynski R. M. Immunization of susceptible BALB/c mice against Leishmania braziliensis. I. Resistance induced using as immunogen adherent or nonadherent cells from infected mice. Cell Immunol. 1985 Aug;94(1):1–10. doi: 10.1016/0008-8749(85)90080-2. [DOI] [PubMed] [Google Scholar]
  3. Grimaldi G., Jr, David J. R., McMahon-Pratt D. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies. Am J Trop Med Hyg. 1987 Mar;36(2):270–287. doi: 10.4269/ajtmh.1987.36.270. [DOI] [PubMed] [Google Scholar]
  4. Kreutzer R. D., Christensen H. A. Characterization of Leishmania spp. by isozyme electrophoresis. Am J Trop Med Hyg. 1980 Mar;29(2):199–208. doi: 10.4269/ajtmh.1980.29.199. [DOI] [PubMed] [Google Scholar]
  5. Rodgers M. R., Popper S. J., Wirth D. F. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp Parasitol. 1990 Oct;71(3):267–275. doi: 10.1016/0014-4894(90)90031-7. [DOI] [PubMed] [Google Scholar]
  6. Rogers W. O., Wirth D. F. Kinetoplast DNA minicircles: regions of extensive sequence divergence. Proc Natl Acad Sci U S A. 1987 Jan;84(2):565–569. doi: 10.1073/pnas.84.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Titus R. G., Ribeiro J. M. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988 Mar 11;239(4845):1306–1308. doi: 10.1126/science.3344436. [DOI] [PubMed] [Google Scholar]
  8. Titus R. G., Ribeiro J. M. The role of vector saliva in transmission of arthropod-borne disease. Parasitol Today. 1990 May;6(5):157–160. doi: 10.1016/0169-4758(90)90338-5. [DOI] [PubMed] [Google Scholar]
  9. Walton B. C. Leishmaniasis. A worldwide problem. Int J Dermatol. 1989 Jun;28(5):305–307. doi: 10.1111/j.1365-4362.1989.tb01349.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES