Abstract
Eosinophilic endocarditis is a potentially lethal complication of chronic peripheral blood hypereosinophilia. We hypothesized that eosinophil peroxidase (EPO), an abundant eosinophil (EO) cationic granule protein, promotes eosinophilic endocarditis by binding to negatively charged endocardium, and there generating cytotoxic oxidants. Using an immunocytochemical technique, we demonstrated endocardial deposition of EPO in the heart of a patient with hypereosinophilic heart disease. Because EPO preferentially oxidizes Br- to hypobromous acid (HOBr) rather than Cl- to hypochlorous acid (HOCl) at physiologic halide concentrations, we characterized the Br(-)- dependent toxicity of both activated EOs and purified human EPO towards several types of endothelial cells and isolated working rat hearts. In RPMI supplemented with 100 microM Br-, phorbol myristate acetate- activated EOs, but not polymorphonuclear leukocytes, caused 1.8-3.6 times as much 51Cr release from four types of endothelial cell monolayers as in RPMI alone. H2O2 and purified human EPO, especially when bound to cell surfaces, mediated extraordinarily potent, completely Br(-)-dependent cytolysis of endothelial cells that was reversed by peroxidase inhibitors, HOBr scavengers, and competitive substrates. We further modeled eosinophilic endocarditis by instilling EPO into the left ventricles of isolated rat hearts, flushing unbound EPO, then perfusing them with a buffer containing 100 microM Br- and 1 microM H2O2. Acute congestive heart failure (evidenced by a precipitous decrement in rate pressure product, stroke volume work, aortic output, and MVO2 to 0-33% of control values) ensued over 20 min, which deletion of EPO, Br-, or H2O2 completely abrogated. These findings raise the possibility that EPO bound to endocardial cells might utilize H2O2 generated either by overlying phagocytes or endogenous cardiac metabolism along with the virtually inexhaustible supply of Br- from flowing blood to fuel HOBr-mediated cell damage. By this mechanism, EPO may play an important role in the pathogenesis of eosinophilic endocarditis.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agosti J. M., Altman L. C., Ayars G. H., Loegering D. A., Gleich G. J., Klebanoff S. J. The injurious effect of eosinophil peroxidase, hydrogen peroxide, and halides on pneumocytes in vitro. J Allergy Clin Immunol. 1987 Mar;79(3):496–504. doi: 10.1016/0091-6749(87)90368-x. [DOI] [PubMed] [Google Scholar]
- Allen R. C., Stjernholm R. L., Steele R. H. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun. 1972 May 26;47(4):679–684. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
- Bolscher B. G., Plat H., Wever R. Some properties of human eosinophil peroxidase, a comparison with other peroxidases. Biochim Biophys Acta. 1984 Jan 31;784(2-3):177–186. doi: 10.1016/0167-4838(84)90125-0. [DOI] [PubMed] [Google Scholar]
- Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butterworth A. E., Wassom D. L., Gleich G. J., Loegering D. A., David J. R. Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. J Immunol. 1979 Jan;122(1):221–229. [PubMed] [Google Scholar]
- Carlson M. G., Peterson C. G., Venge P. Human eosinophil peroxidase: purification and characterization. J Immunol. 1985 Mar;134(3):1875–1879. [PubMed] [Google Scholar]
- Carlson M. G., Peterson C. G., Venge P. Human eosinophil peroxidase: purification and characterization. J Immunol. 1985 Mar;134(3):1875–1879. [PubMed] [Google Scholar]
- Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
- GEORGE P. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. I. Titration with reducing agents. Biochem J. 1953 May;54(2):267–276. doi: 10.1042/bj0540267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gleich G. J., Frigas E., Loegering D. A., Wassom D. L., Steinmuller D. Cytotoxic properties of the eosinophil major basic protein. J Immunol. 1979 Dec;123(6):2925–2927. [PubMed] [Google Scholar]
- Henderson W. R., Jong E. C., Klebanoff S. J. Binding of eosinophil peroxidase to mast cell granules with retention of peroxidatic activity. J Immunol. 1980 Mar;124(3):1383–1388. [PubMed] [Google Scholar]
- Jong E. C., Chi E. Y., Klebanoff S. J. Human neutrophil-mediated killing of schistosomula of Schistosoma mansoni: augmentation by schistosomal binding of eosinophil peroxidase. Am J Trop Med Hyg. 1984 Jan;33(1):104–115. doi: 10.4269/ajtmh.1984.33.104. [DOI] [PubMed] [Google Scholar]
- Jong E. C., Henderson W. R., Klebanoff S. J. Bactericidal activity of eosinophil peroxidase. J Immunol. 1980 Mar;124(3):1378–1382. [PubMed] [Google Scholar]
- Kanofsky J. R., Hoogland H., Wever R., Weiss S. J. Singlet oxygen production by human eosinophils. J Biol Chem. 1988 Jul 15;263(20):9692–9696. [PubMed] [Google Scholar]
- Kanofsky J. R. Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems. J Biol Chem. 1984 May 10;259(9):5596–5600. [PubMed] [Google Scholar]
- Kanofsky J. R., Wright J., Miles-Richardson G. E., Tauber A. I. Biochemical requirements for singlet oxygen production by purified human myeloperoxidase. J Clin Invest. 1984 Oct;74(4):1489–1495. doi: 10.1172/JCI111562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerckaert I., Roels F. Myocardial H2O2 production in the unanaesthetized rat. Influence of fasting, myocardial load and inhibition of superoxide dismutase and monoamine oxidase. Basic Res Cardiol. 1986 Jan-Feb;81(1):83–91. doi: 10.1007/BF01907430. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Agosti J. M., Jörg A., Waltersdorph A. M. Comparative toxicity of the horse eosinophil peroxidase-H2O2-halide system and granule basic proteins. J Immunol. 1989 Jul 1;143(1):239–244. [PubMed] [Google Scholar]
- Klebanoff S. J., Waltersdorph A. M., Rosen H. Antimicrobial activity of myeloperoxidase. Methods Enzymol. 1984;105:399–403. doi: 10.1016/s0076-6879(84)05055-2. [DOI] [PubMed] [Google Scholar]
- Lehrer R. I., Szklarek D., Barton A., Ganz T., Hamann K. J., Gleich G. J. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol. 1989 Jun 15;142(12):4428–4434. [PubMed] [Google Scholar]
- Locksley R. M., Jacobs R. F., Wilson C. B., Weaver W. M., Klebanoff S. J. Susceptibility of Legionella pneumophila to oxygen-dependent microbicidal systems. J Immunol. 1982 Nov;129(5):2192–2197. [PubMed] [Google Scholar]
- Locksley R. M., Wilson C. B., Klebanoff S. J. Role for endogenous and acquired peroxidase in the toxoplasmacidal activity of murine and human mononuclear phagocytes. J Clin Invest. 1982 May;69(5):1099–1111. doi: 10.1172/JCI110545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayeno A. N., Curran A. J., Roberts R. L., Foote C. S. Eosinophils preferentially use bromide to generate halogenating agents. J Biol Chem. 1989 Apr 5;264(10):5660–5668. [PubMed] [Google Scholar]
- Nathan C. F., Klebanoff S. J. Augmentation of spontaneous macrophage-mediated cytolysis by eosinophil peroxidase. J Exp Med. 1982 May 1;155(5):1291–1308. doi: 10.1084/jem.155.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neely J. R., Liebermeister H., Battersby E. J., Morgan H. E. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol. 1967 Apr;212(4):804–814. doi: 10.1152/ajplegacy.1967.212.4.804. [DOI] [PubMed] [Google Scholar]
- Nogueira N. M., Klebanoff S. J., Cohn Z. A. T. cruzi: sensitization to macrophage killing by eosinophil peroxidase. J Immunol. 1982 Apr;128(4):1705–1708. [PubMed] [Google Scholar]
- Oakley C. M., Olsen G. J. Eosinophilia and heart disease. Br Heart J. 1977 Mar;39(3):233–237. doi: 10.1136/hrt.39.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parrillo J. E., Borer J. S., Henry W. L., Wolff S. M., Fauci A. S. The cardiovascular manifestations of the hypereosinophilic syndrome. Prospective study of 26 patients, with review of the literature. Am J Med. 1979 Oct;67(4):572–582. doi: 10.1016/0002-9343(79)90227-4. [DOI] [PubMed] [Google Scholar]
- Ramsey P. G., Martin T., Chi E., Klebanoff S. J. Arming of mononuclear phagocytes by eosinophil peroxidase bound to Staphylococcus aureus. J Immunol. 1982 Jan;128(1):415–420. [PubMed] [Google Scholar]
- Roberts R. L., Gallin J. I. Rapid method for isolation of normal human peripheral blood eosinophils on discontinuous Percoll gradients and comparison with neutrophils. Blood. 1985 Feb;65(2):433–440. [PubMed] [Google Scholar]
- Skubitz K. M., Christiansen N. P., Mendiola J. R. Preparation and characterization of monoclonal antibodies to human neutrophil cathepsin G, lactoferrin, eosinophil peroxidase, and eosinophil major basic protein. J Leukoc Biol. 1989 Aug;46(2):109–118. doi: 10.1002/jlb.46.2.109. [DOI] [PubMed] [Google Scholar]
- Slungaard A., Vercellotti G. M., Walker G., Nelson R. D., Jacob H. S. Tumor necrosis factor alpha/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med. 1990 Jun 1;171(6):2025–2041. doi: 10.1084/jem.171.6.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spry C. J., Tai P. C. Studies on blood eosinophils. II. Patients with Löffler's cardiomyopathy. Clin Exp Immunol. 1976 Jun;24(3):423–434. [PMC free article] [PubMed] [Google Scholar]
- Tai P. C., Ackerman S. J., Spry C. J., Dunnette S., Olsen E. G., Gleich G. J. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet. 1987 Mar 21;1(8534):643–647. doi: 10.1016/s0140-6736(87)90412-0. [DOI] [PubMed] [Google Scholar]
- Wassom D. L., Loegering D. A., Solley G. O., Moore S. B., Schooley R. T., Fauci A. S., Gleich G. J. Elevated serum levels of the eosinophil granule major basic protein in patients with eosinophilia. J Clin Invest. 1981 Mar;67(3):651–661. doi: 10.1172/JCI110080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. J., Test S. T., Eckmann C. M., Roos D., Regiani S. Brominating oxidants generated by human eosinophils. Science. 1986 Oct 10;234(4773):200–203. doi: 10.1126/science.3018933. [DOI] [PubMed] [Google Scholar]
- Young J. D., Peterson C. G., Venge P., Cohn Z. A. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature. 1986 Jun 5;321(6070):613–616. doi: 10.1038/321613a0. [DOI] [PubMed] [Google Scholar]
- Zabucchi G., Soranzo M. R., Menegazzi R., Bertoncin P., Nardon E., Patriarca P. Uptake of human eosinophil peroxidase and myeloperoxidase by cells involved in the inflammatory process. J Histochem Cytochem. 1989 Apr;37(4):499–508. doi: 10.1177/37.4.2538504. [DOI] [PubMed] [Google Scholar]