Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Jan 1;173(1):269–272. doi: 10.1084/jem.173.1.269

Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor

PMCID: PMC2118769  PMID: 1985123

Abstract

Osteopetrotic (op/op) mice have a severe deficiency of osteoclasts, monocytes, and peritoneal macrophages because of a defect in the production of functional macrophage colony-stimulating factor (M-CSF) resulting from a mutation within the M-CSF gene. In this study, we examined whether daily 5-microgram injections of purified recombinant human M-CSF (rhM-CSF) for 14 d would cure these deficiencies in the mutant mice. Monocytes in the peripheral blood of the op/op mice were significantly increased in number after subcutaneous injections of the factor two or three times a day. In contrast, osteopetrosis in the long bones of op/op mice was completely cured by only one injection of rhM- CSF per day. Bone trabeculae in the diaphyses were removed. Many osteoclasts were detected on the surface of bone trabeculae in the metaphyses. Although development of tooth germs of uninjected op/op mice was impaired, rhM-CSF injection restored the development of molar tooth germs and led to tooth eruption as a consequence of the recovery of bone-resorbing activity. These results demonstrate that M-CSF is one of the factors responsible for the differentiation of osteoclasts and monocyte/macrophages under physiological conditions.

Full Text

The Full Text of this article is available as a PDF (427.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dickson I. R., Scheven B. A. Regulation of new osteoclast formation by a bone cell-derived macromolecular factor. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1383–1390. doi: 10.1016/0006-291x(89)92263-8. [DOI] [PubMed] [Google Scholar]
  2. Felix R., Cecchini M. G., Hofstetter W., Elford P. R., Stutzer A., Fleisch H. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res. 1990 Jul;5(7):781–789. doi: 10.1002/jbmr.5650050716. [DOI] [PubMed] [Google Scholar]
  3. Hagenaars C. E., van der Kraan A. A., Kawilarang-de Haas E. W., Visser J. W., Nijweide P. J. Osteoclast formation from cloned pluripotent hemopoietic stem cells. Bone Miner. 1989 May;6(2):179–189. doi: 10.1016/0169-6009(89)90049-4. [DOI] [PubMed] [Google Scholar]
  4. Hammarström L. E., Hanker J. S., Toverud S. U. Cellular differences in acid phosphatase isoenzymes in bone and teeth. Clin Orthop Relat Res. 1971;78:151–167. doi: 10.1097/00003086-197107000-00012. [DOI] [PubMed] [Google Scholar]
  5. Kurihara N., Suda T., Miura Y., Nakauchi H., Kodama H., Hiura K., Hakeda Y., Kumegawa M. Generation of osteoclasts from isolated hematopoietic progenitor cells. Blood. 1989 Sep;74(4):1295–1302. [PubMed] [Google Scholar]
  6. Marks S. C., Jr Morphological evidence of reduced bone resorption in osteopetrotic (op) mice. Am J Anat. 1982 Feb;163(2):157–167. doi: 10.1002/aja.1001630205. [DOI] [PubMed] [Google Scholar]
  7. Marks S. C., Jr, Seifert M. F., McGuire J. L. Congenitally osteopetrotic (oplop) mice are not cured by transplants of spleen or bone marrow cells from normal littermates. Metab Bone Dis Relat Res. 1984;5(4):183–186. doi: 10.1016/0221-8747(84)90027-4. [DOI] [PubMed] [Google Scholar]
  8. Shinar D. M., Sato M., Rodan G. A. The effect of hemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology. 1990 Mar;126(3):1728–1735. doi: 10.1210/endo-126-3-1728. [DOI] [PubMed] [Google Scholar]
  9. Udagawa N., Takahashi N., Akatsu T., Sasaki T., Yamaguchi A., Kodama H., Martin T. J., Suda T. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 1989 Oct;125(4):1805–1813. doi: 10.1210/endo-125-4-1805. [DOI] [PubMed] [Google Scholar]
  10. Wiktor-Jedrzejczak W. W., Ahmed A., Szczylik C., Skelly R. R. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J Exp Med. 1982 Nov 1;156(5):1516–1527. doi: 10.1084/jem.156.5.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wiktor-Jedrzejczak W., Bartocci A., Ferrante A. W., Jr, Ahmed-Ansari A., Sell K. W., Pollard J. W., Stanley E. R. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4828–4832. doi: 10.1073/pnas.87.12.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yoshida H., Hayashi S., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T., Shultz L. D., Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990 May 31;345(6274):442–444. doi: 10.1038/345442a0. [DOI] [PubMed] [Google Scholar]
  13. van de Wijngaert F. P., Tas M. C., van der Meer J. W., Burger E. H. Growth of osteoclast precursor-like cells from whole mouse bone marrow: inhibitory effect of CSF-1. Bone Miner. 1987 Nov;3(2):97–110. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES