Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Feb 1;173(2):287–296. doi: 10.1084/jem.173.2.287

A novel class of anti-DNA antibodies identified in BALB/c mice

PMCID: PMC2118791  PMID: 1988536

Abstract

We have characterized four IgG monoclonal antibodies (mAbs) derived from BALB/c mice that bind double-stranded DNA (dsDNA) with high affinity. The hydridomas were selected for expression of a member of the VHS107 family. Three of the four cell lines use the VH11 gene and one uses the VH1 gene. These antibodies exhibit many characteristics of pathogenic anti-DNA antibodies. They are high affinity and not broadly crossreactive. Unlike the anti-DNA antibodies in autoimmune mice, they exhibit no somatic mutation in their VH genes. These results demonstrate that somatic mutation of VHS107 genes is not necessary for generating high affinity dsDNA binding. The fact that such antibodies have not previously been reported suggests that they are rare and that their expression may be downregulated in both nonautoimmune and autoimmune individuals.

Full Text

The Full Text of this article is available as a PDF (946.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccala R., Quang T. V., Gilbert M., Ternynck T., Avrameas S. Two murine natural polyreactive autoantibodies are encoded by nonmutated germ-line genes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4624–4628. doi: 10.1073/pnas.86.12.4624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behar S. M., Scharff M. D. Somatic diversification of the S107 (T15) VH11 germ-line gene that encodes the heavy-chain variable region of antibodies to double-stranded DNA in (NZB x NZW)F1 mice. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3970–3974. doi: 10.1073/pnas.85.11.3970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyd R. T., Goldrick M. M., Gottlieb P. D. Structural differences in a single gene encoding the V kappa Ser group of light chains explain the existence of two mouse light-chain genetic markers. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9134–9138. doi: 10.1073/pnas.83.23.9134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cairns E., Block J., Bell D. A. Anti-DNA autoantibody-producing hybridomas of normal human lymphoid cell origin. J Clin Invest. 1984 Sep;74(3):880–887. doi: 10.1172/JCI111505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark M. R., Milstein C. Expression of spleen cell immunoglobulin phenotype in hybrids with myeloma cell lines. Somatic Cell Genet. 1981 Nov;7(6):657–666. doi: 10.1007/BF01538755. [DOI] [PubMed] [Google Scholar]
  6. Corbet S., Milili M., Fougereau M., Schiff C. Two V kappa germ-line genes related to the GAT idiotypic network (Ab1 and Ab3/Ab1') account for the major subfamilies of the mouse V kappa-1 variability subgroup. J Immunol. 1987 Feb 1;138(3):932–939. [PubMed] [Google Scholar]
  7. Crews S., Griffin J., Huang H., Calame K., Hood L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981 Jul;25(1):59–66. doi: 10.1016/0092-8674(81)90231-2. [DOI] [PubMed] [Google Scholar]
  8. Davidson A., Chien N., Frank L., Halpern R., Snapper S., Zupko K., Diamond B. Use of anti-idiotypic antibodies to explore genetic mechanisms of production of anti-DNA antibodies. Cell Immunol. 1986 Apr 15;99(1):44–52. doi: 10.1016/0008-8749(86)90214-5. [DOI] [PubMed] [Google Scholar]
  9. Diamond B., Scharff M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5841–5844. doi: 10.1073/pnas.81.18.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ebling F., Hahn B. H. Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus. Comparison of antibodies in serum and renal eluates. Arthritis Rheum. 1980 Apr;23(4):392–403. doi: 10.1002/art.1780230402. [DOI] [PubMed] [Google Scholar]
  11. Eilat D., Webster D. M., Rees A. R. V region sequences of anti-DNA and anti-RNA autoantibodies from NZB/NZW F1 mice. J Immunol. 1988 Sep 1;141(5):1745–1753. [PubMed] [Google Scholar]
  12. Emlen W., Pisetsky D. S., Taylor R. P. Antibodies to DNA. A perspective. Arthritis Rheum. 1986 Dec;29(12):1417–1426. doi: 10.1002/art.1780291201. [DOI] [PubMed] [Google Scholar]
  13. Feddersen R. M., Van Ness B. G. Double recombination of a single immunoglobulin kappa-chain allele: implications for the mechanism of rearrangement. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4793–4797. doi: 10.1073/pnas.82.14.4793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ferguson S. E., Rudikoff S., Osborne B. A. Interaction and sequence diversity among T15 VH genes in CBA/J mice. J Exp Med. 1988 Oct 1;168(4):1339–1349. doi: 10.1084/jem.168.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fournié G. J., Lambert P. H., Meischer P. A. Release of DNA in circulating blood and induction of anti-DNA antibodies after injection of bacterial lipopolysaccharides. J Exp Med. 1974 Nov 1;140(5):1189–1206. doi: 10.1084/jem.140.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Geliebter J., Zeff R. A., Melvold R. W., Nathenson S. G. Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: Kbm9 and Kbm6. Proc Natl Acad Sci U S A. 1986 May;83(10):3371–3375. doi: 10.1073/pnas.83.10.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gibson J., Basten A., Walker K. Z., Loblay R. H. A role for suppressor T cells in induction of self-tolerance. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5150–5154. doi: 10.1073/pnas.82.15.5150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hahn B. H. Characteristics of pathogenic subpopulations of antibodies to DNA. Arthritis Rheum. 1982 Jul;25(7):747–752. doi: 10.1002/art.1780250706. [DOI] [PubMed] [Google Scholar]
  19. Hayakawa K., Hardy R. R., Parks D. R., Herzenberg L. A. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med. 1983 Jan 1;157(1):202–218. doi: 10.1084/jem.157.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoch S., Schur P. H., Schwaber J. Frequency of anti-DNA antibody producing cells from normals and patients with systemic lupus erythematosus. Clin Immunol Immunopathol. 1983 Apr;27(1):28–37. doi: 10.1016/0090-1229(83)90053-3. [DOI] [PubMed] [Google Scholar]
  21. Kaushik A., Lim A., Poncet P., Ge X. R., Dighiero G. Comparative analysis of natural antibody specificities among hybridomas originating from spleen and peritoneal cavity of adult NZB and BALB/c mice. Scand J Immunol. 1988 Apr;27(4):461–471. doi: 10.1111/j.1365-3083.1988.tb02372.x. [DOI] [PubMed] [Google Scholar]
  22. Koffler D., Agnello V., Kimkel H. G. Polynucleotide immune complexes in serum and glomeruli of patients with systemic lupus erythematosus. Am J Pathol. 1974 Jan;74(1):109–124. [PMC free article] [PubMed] [Google Scholar]
  23. Loh E., Black B., Riblet R., Weigert M., Hood J. M., Hood L. Myeloma proteins from NZB and BALB/c mice: structural and functional differences. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1395–1399. doi: 10.1073/pnas.76.3.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Manser T., Gefter M. L. Isolation of hybridomas expressing a specific heavy chain variable region gene segment by using a screening technique that detects mRNA sequences in whole cell lysates. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2470–2474. doi: 10.1073/pnas.81.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marion T. N., Bothwell A. L., Briles D. E., Janeway C. A., Jr IgG anti-DNA autoantibodies within an individual autoimmune mouse are the products of clonal selection. J Immunol. 1989 Jun 15;142(12):4269–4274. [PubMed] [Google Scholar]
  26. Naparstek Y., André-Schwartz J., Manser T., Wysocki L. J., Breitman L., Stollar B. D., Gefter M., Schwartz R. S. A single germline VH gene segment of normal A/J mice encodes autoantibodies characteristic of systemic lupus erythematosus. J Exp Med. 1986 Aug 1;164(2):614–626. doi: 10.1084/jem.164.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neu N., Beisel K. W., Traystman M. D., Rose N. R., Craig S. W. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J Immunol. 1987 Apr 15;138(8):2488–2492. [PubMed] [Google Scholar]
  28. Nieto A., Gaya A., Jansa M., Moreno C., Vives J. Direct measurement of antibody affinity distribution by hapten-inhibition enzyme immunoassay. Mol Immunol. 1984 Jun;21(6):537–543. doi: 10.1016/0161-5890(84)90070-1. [DOI] [PubMed] [Google Scholar]
  29. Nishioka Y., Leder P. Organization and complete sequence of identical embryonic and plasmacytoma kappa V-region genes. J Biol Chem. 1980 Apr 25;255(8):3691–3694. [PubMed] [Google Scholar]
  30. Schwartz R. S. Anti-DNA antibodies and the problem of autoimmunity. Cell Immunol. 1986 Apr 15;99(1):38–43. doi: 10.1016/0008-8749(86)90213-3. [DOI] [PubMed] [Google Scholar]
  31. Seeman N. C., Rosenberg J. M., Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A. 1976 Mar;73(3):804–808. doi: 10.1073/pnas.73.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shefner R., Mayer R., Kaushik A., D'Eustachio P., Bona C., Diamond B. Identification of a new V kappa gene family that is highly expressed in hybridomas from an autoimmune mouse strain. J Immunol. 1990 Sep 1;145(5):1609–1614. [PubMed] [Google Scholar]
  33. Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shlomchik M. J., Nemazee D. A., Sato V. L., Van Snick J., Carson D. A., Weigert M. G. Variable region sequences of murine IgM anti-IgG monoclonal autoantibodies (rheumatoid factors). A structural explanation for the high frequency of IgM anti-IgG B cells. J Exp Med. 1986 Aug 1;164(2):407–427. doi: 10.1084/jem.164.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shlomchik M., Mascelli M., Shan H., Radic M. Z., Pisetsky D., Marshak-Rothstein A., Weigert M. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med. 1990 Jan 1;171(1):265–292. doi: 10.1084/jem.171.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smeenk R. J., Brinkman K., van den Brink H. G., Westgeest A. A. Reaction patterns of monoclonal antibodies to DNA. J Immunol. 1988 Jun 1;140(11):3786–3792. [PubMed] [Google Scholar]
  37. Ternynck T., Avrameas S. Murine natural monoclonal autoantibodies: a study of their polyspecificities and their affinities. Immunol Rev. 1986 Dec;94:99–112. doi: 10.1111/j.1600-065x.1986.tb01166.x. [DOI] [PubMed] [Google Scholar]
  38. Yoshida H., Yoshida M., Izui S., Lambert P. H. Distinct clonotypes of anti-DNA antibodies in mice with lupus nephritis. J Clin Invest. 1985 Aug;76(2):685–694. doi: 10.1172/JCI112022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zupko K., Waltenbaugh C., Diamond B. Use of anti-idiotypic antibodies to identify a receptor for the T-cell I-J determinant. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7399–7403. doi: 10.1073/pnas.82.21.7399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES