Abstract
In previously published studies, we had demonstrated that hydrazine sulfate pretreatment protected mice against the lethal effects of endotoxin and that this protection was accompanied by a sustained increase in hepatic phosphoenolpyruvate carboxykinase activity (Silverstein, R., C.A. Christoffersen, and D.C. Morrison. 1989. Infect. Immun. 57:2072). The same hydrazine sulfate pretreatment has now been found to protect mice against endotoxin in the D-galactosamine model with an increase in the endotoxin LD50 of approximately four orders of magnitude. Elimination of the pretreatment period, or administration of an additional dose of D-galactosamine at the time of hydrazine sulfate pretreatment, renders the mice refractory to the protection. Given the sensitivity of phosphoenolpyruvate carboxykinase regulation to several hormones, we investigated the possibility that protection may have been hormone mediated. In addition to determining the effect of hydrazine sulfate on the plasma levels of phosphoenolpyruvate carboxykinase regulating hormones, we have investigated the effects of hydrazine sulfate on endotoxin lethality in mice whose capacity to respond hormonally to external stimuli has been compromised by hypophysectomy. Our results show a significant enhancement in circulating levels of plasma corticosterone 30 min after hydrazine sulfate injection. Moreover, hypophysectomy results in a marked increase in sensitivity of mice to endotoxin challenge as well as an abrogation of the protection against endotoxin lethality mediated by hydrazine sulfate. Although hydrazine sulfate protection distinguishes between sensitivity brought on, individually, by D-galactosamine and by hypophysectomy, mice sensitized by both hypophysectomy and D-galactosamine are not protected against endotoxin lethality by hydrazine sulfate. We conclude that hydrazine sulfate protection against endotoxin lethality is endocrine dependent, with the available evidence implicating a pituitary/adrenal axis, with glucocorticoid involvement. In as much as D-galactosamine is known to act directly in the liver in disrupting protein synthesis, it is proposed that events in the liver are critical to the hydrazine sulfate-mediated protection against endotoxin and are possibly the target of the endocrine involvement. Hydrazine sulfate pretreatment also protects D-galactosamine-sensitized mice against the lethal effects of injected tumor necrosis factor/cachectin.
Full Text
The Full Text of this article is available as a PDF (861.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABERNATHY R. S., HALBERG F., SPINK W. W. Studies on the mechanism of chlorpromazine protection against Brucella endotoxin in mice. J Lab Clin Med. 1957 May;49(5):708–715. [PubMed] [Google Scholar]
- Baumann H., Prowse K. R., Marinković S., Won K. A., Jahreis G. P. Stimulation of hepatic acute phase response by cytokines and glucocorticoids. Ann N Y Acad Sci. 1989;557:280-95, discussion 295-6. doi: 10.1111/j.1749-6632.1989.tb24021.x. [DOI] [PubMed] [Google Scholar]
- Beale E. G., Chrapkiewicz N. B., Scoble H. A., Metz R. J., Quick D. P., Noble R. L., Donelson J. E., Biemann K., Granner D. K. Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem. 1985 Sep 5;260(19):10748–10760. [PubMed] [Google Scholar]
- Bertini R., Bianchi M., Ghezzi P. Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. J Exp Med. 1988 May 1;167(5):1708–1712. doi: 10.1084/jem.167.5.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beutler B., Cerami A. The history, properties, and biological effects of cachectin. Biochemistry. 1988 Oct 4;27(20):7575–7582. doi: 10.1021/bi00420a001. [DOI] [PubMed] [Google Scholar]
- Beutler B., Krochin N., Milsark I. W., Luedke C., Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. doi: 10.1126/science.3754653. [DOI] [PubMed] [Google Scholar]
- Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
- Cimbala M. A., Lamers W. H., Nelson K., Monahan J. E., Yoo-Warren H., Hanson R. W. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney. Effects of insulin and cyclic AMP. J Biol Chem. 1982 Jul 10;257(13):7629–7636. [PubMed] [Google Scholar]
- Clawson G. A., Sesno J., Milam K., Wang Y. F., Gabriel C. The hepatocyte protein synthesis defect induced by galactosamine involves hypomethylation of ribosomal RNA. Hepatology. 1990 Mar;11(3):428–434. doi: 10.1002/hep.1840110314. [DOI] [PubMed] [Google Scholar]
- Freudenberg M. A., Keppler D., Galanos C. Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin. Infect Immun. 1986 Mar;51(3):891–895. doi: 10.1128/iai.51.3.891-895.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galanos C., Freudenberg M. A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5939–5943. doi: 10.1073/pnas.76.11.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreger B. E., Craven D. E., Carling P. C., McCabe W. R. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med. 1980 Mar;68(3):332–343. doi: 10.1016/0002-9343(80)90101-1. [DOI] [PubMed] [Google Scholar]
- Lamers W. H., Hanson R. W., Meisner H. M. cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase in rat liver nuclei. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5137–5141. doi: 10.1073/pnas.79.17.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverstein R., Christoffersen C. A., Morrison D. C. Modulation of endotoxin lethality in mice by hydrazine sulfate. Infect Immun. 1989 Jul;57(7):2072–2078. doi: 10.1128/iai.57.7.2072-2078.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
- Wallach D., Holtmann H., Engelmann H., Nophar Y. Sensitization and desensitization to lethal effects of tumor necrosis factor and IL-1. J Immunol. 1988 May 1;140(9):2994–2999. [PubMed] [Google Scholar]
- Wolff S. M., Bennett J. V. Editorial: Gram-negative-rod bacteremia. N Engl J Med. 1974 Oct 3;291(14):733–734. doi: 10.1056/NEJM197410032911411. [DOI] [PubMed] [Google Scholar]
- Wu G. Y., Keegan-Rogers V., Franklin S., Midford S., Wu C. H. Targeted antagonism of galactosamine toxicity in normal rat hepatocytes in vitro. J Biol Chem. 1988 Apr 5;263(10):4719–4723. [PubMed] [Google Scholar]
- Ziegler E. J., McCutchan J. A., Fierer J., Glauser M. P., Sadoff J. C., Douglas H., Braude A. I. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med. 1982 Nov 11;307(20):1225–1230. doi: 10.1056/NEJM198211113072001. [DOI] [PubMed] [Google Scholar]