Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Feb 1;173(2):429–437. doi: 10.1084/jem.173.2.429

Transgenic mice expressing a B cell growth and differentiation factor gene (interleukin 5) develop eosinophilia and autoantibody production

PMCID: PMC2118799  PMID: 1988543

Abstract

Interleukin 5 (IL-5) has been suggested to be involved in the growth and differentiation of B cells and eosinophils. Especially, Ly-1+ B cells, which have been considered to produce autoantibodies, are selectively developed by this lymphokine in long-term bone marrow culture. To envisage the possible engagement of IL-5 in the development of these cells in vivo, transgenic mice carrying the mouse IL-5 gene ligated with a metallothionein promoter were generated. Transgenic mice carrying the IL-5 gene exhibited elevated levels of IL-5 in the serum and an increase in the levels of serum IgM and IgA. A massive eosinophilia in peripheral blood, bone marrow, and spleen, and an infiltration of muscle and liver with eosinophils, were observed. When cadmium-containing saline was injected intraperitoneally into transgenic mice, IL-5 production was augmented about five times within 24 h, and a distinctive Ly-1+ B cell population became apparent in the spleen after 5 d. IL-5 receptors were detected on those cells by monoclonal antibodies against IL-5 receptors. Another interesting finding in these transgenic mice was an increase in polyreactive anti- DNA antibodies of IgM class. It is suggested, therefore, that aberrant expression of the IL-5 gene may induce accumulation of Ly-1+ B cells and eosinophils. Furthermore, this IL-5 transgenic mouse can be a model mouse for eosinophilia, and we can determine the role of IL-5 in the differentiation of Ly-1+ B cells and eosinophils by using this mouse.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma C., Tanabe T., Konishi M., Kinashi T., Noma T., Matsuda F., Yaoita Y., Takatsu K., Hammarström L., Smith C. I. Cloning of cDNA for human T-cell replacing factor (interleukin-5) and comparison with the murine homologue. Nucleic Acids Res. 1986 Nov 25;14(22):9149–9158. doi: 10.1093/nar/14.22.9149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basten A., Beeson P. B. Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med. 1970 Jun 1;131(6):1288–1305. doi: 10.1084/jem.131.6.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boom W. H., Liano D., Abbas A. K. Heterogeneity of helper/inducer T lymphocytes. II. Effects of interleukin 4- and interleukin 2-producing T cell clones on resting B lymphocytes. J Exp Med. 1988 Apr 1;167(4):1350–1363. doi: 10.1084/jem.167.4.1350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casali P., Notkins A. L. Probing the human B-cell repertoire with EBV: polyreactive antibodies and CD5+ B lymphocytes. Annu Rev Immunol. 1989;7:513–535. doi: 10.1146/annurev.iy.07.040189.002501. [DOI] [PubMed] [Google Scholar]
  5. Coffman R. L., Seymour B. W., Hudak S., Jackson J., Rennick D. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science. 1989 Jul 21;245(4915):308–310. doi: 10.1126/science.2787531. [DOI] [PubMed] [Google Scholar]
  6. Förster I., Rajewsky K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn mice. Eur J Immunol. 1987 Apr;17(4):521–528. doi: 10.1002/eji.1830170414. [DOI] [PubMed] [Google Scholar]
  7. Harada N., Kikuchi Y., Tominaga A., Takaki S., Takatsu K. BCGFII activity on activated B cells of a purified murine T cell-replacing factor (TRF) from a T cell hybridoma (B151K12). J Immunol. 1985 Jun;134(6):3944–3951. [PubMed] [Google Scholar]
  8. Harada N., Matsumoto M., Koyama N., Shimizu A., Honjo T., Tominaga A., Takatsu K. T cell replacing factor/interleukin 5 induces not only B-cell growth and differentiation, but also increased expression of interleukin 2 receptor on activated B-cells. Immunol Lett. 1987 Jul;15(3):205–215. doi: 10.1016/0165-2478(87)90026-5. [DOI] [PubMed] [Google Scholar]
  9. Harada N., Takahashi T., Matsumoto M., Kinashi T., Ohara J., Kikuchi Y., Koyama N., Severinson E., Yaoita Y., Honjo T. Production of a monoclonal antibody useful in the molecular characterization of murine T-cell-replacing factor/B-cell growth factor II. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4581–4585. doi: 10.1073/pnas.84.13.4581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hardy R. R., Hayakawa K. Development and physiology of Ly-1 B and its human homolog, Leu-1 B. Immunol Rev. 1986 Oct;93:53–79. doi: 10.1111/j.1600-065x.1986.tb01502.x. [DOI] [PubMed] [Google Scholar]
  11. Hayakawa K., Hardy R. R., Herzenberg L. A., Herzenberg L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med. 1985 Jun 1;161(6):1554–1568. doi: 10.1084/jem.161.6.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayakawa K., Hardy R. R., Herzenberg L. A. Peritoneal Ly-1 B cells: genetic control, autoantibody production, increased lambda light chain expression. Eur J Immunol. 1986 Apr;16(4):450–456. doi: 10.1002/eji.1830160423. [DOI] [PubMed] [Google Scholar]
  13. Hayakawa K., Hardy R. R., Honda M., Herzenberg L. A., Steinberg A. D., Herzenberg L. A. Ly-1 B cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2494–2498. doi: 10.1073/pnas.81.8.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hayakawa K., Hardy R. R. Normal, autoimmune, and malignant CD5+ B cells: the Ly-1 B lineage? Annu Rev Immunol. 1988;6:197–218. doi: 10.1146/annurev.iy.06.040188.001213. [DOI] [PubMed] [Google Scholar]
  15. Hayakawa K., Hardy R. R., Stall A. M., Herzenberg L. A., Herzenberg L. A. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur J Immunol. 1986 Oct;16(10):1313–1316. doi: 10.1002/eji.1830161021. [DOI] [PubMed] [Google Scholar]
  16. Hitoshi Y., Yamaguchi N., Mita S., Sonoda E., Takaki S., Tominaga A., Takatsu K. Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5)+ B cells. J Immunol. 1990 Jun 1;144(11):4218–4225. [PubMed] [Google Scholar]
  17. Isonishi S., Kanai Y. Antibody to poly(ADP-ribose) as a predictor of obstetric complications in autoimmune MRL/Mp-lpr/lpr mice: basis for its application to pregnant patients with systemic lupus erythematosus. Immunol Lett. 1988 May;18(1):61–66. doi: 10.1016/0165-2478(88)90071-5. [DOI] [PubMed] [Google Scholar]
  18. Kanai Y., Fujiwara M. Naturally occurring antibodies to poly(ADP-ribose) in autoimmune MRL/Mp-lpr/lpr mice. Clin Exp Immunol. 1985 Jan;59(1):132–138. [PMC free article] [PubMed] [Google Scholar]
  19. Kanai Y., Kubota T. A novel trait of naturally occurring anti-DNA antibodies: dissociation from immune complexes in neutral 0.3-0.5 M NaCl. Immunol Lett. 1989 Oct;22(4):293–299. doi: 10.1016/0165-2478(89)90168-5. [DOI] [PubMed] [Google Scholar]
  20. Karasuyama H., Rolink A., Melchers F. Recombinant interleukin 2 or 5, but not 3 or 4, induces maturation of resting mouse B lymphocytes and propagates proliferation of activated B cell blasts. J Exp Med. 1988 Apr 1;167(4):1377–1390. doi: 10.1084/jem.167.4.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Law M. F., Byrne J. C., Howley P. M. A stable bovine papillomavirus hybrid plasmid that expresses a dominant selective trait. Mol Cell Biol. 1983 Nov;3(11):2110–2115. doi: 10.1128/mcb.3.11.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  23. Loughnan M. S., Takatsu K., Harada N., Nossal G. J. T-cell-replacing factor (interleukin 5) induces expression of interleukin 2 receptors on murine splenic B cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5399–5403. doi: 10.1073/pnas.84.15.5399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsumoto M., Tominaga A., Harada N., Takatsu K. Role of T cell-replacing factor (TRF) in the murine B cell differentiation: induction of increased levels of expression of secreted type IgM mRNA. J Immunol. 1987 Mar 15;138(6):1826–1833. [PubMed] [Google Scholar]
  25. Mita S., Harada N., Naomi S., Hitoshi Y., Sakamoto K., Akagi M., Tominaga A., Takatsu K. Receptors for T cell-replacing factor/interleukin 5. Specificity, quantitation, and its implication. J Exp Med. 1988 Sep 1;168(3):863–878. doi: 10.1084/jem.168.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mita S., Tominaga A., Hitoshi Y., Sakamoto K., Honjo T., Akagi M., Kikuchi Y., Yamaguchi N., Takatsu K. Characterization of high-affinity receptors for interleukin 5 on interleukin 5-dependent cell lines. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2311–2315. doi: 10.1073/pnas.86.7.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moutsopoulos H. M., Webber B. L., Pavlidis N. A., Fostiropoulos G., Goules D., Shulman L. E. Diffuse fasciitis with eosinophilia. A clinicopathologic study. Am J Med. 1980 May;68(5):701–709. doi: 10.1016/0002-9343(80)90257-0. [DOI] [PubMed] [Google Scholar]
  28. Murray P. D., Swain S. L., Kagnoff M. P. Regulation of the IgM and IgA anti-dextran B1355S response: synergy between IFN-gamma, BCGF II, and IL 2. J Immunol. 1985 Dec;135(6):4015–4020. [PubMed] [Google Scholar]
  29. Nakanishi K., Yoshimoto T., Katoh Y., Ono S., Matsui K., Hiroishi K., Noma T., Honjo T., Takatsu K., Higashino K. Both B151-T cell replacing factor 1 and IL-5 regulate Ig secretion and IL-2 receptor expression on a cloned B lymphoma line. J Immunol. 1988 Feb 15;140(4):1168–1174. [PubMed] [Google Scholar]
  30. O'Hare K., Benoist C., Breathnach R. Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1527–1531. doi: 10.1073/pnas.78.3.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pennell C. A., Sheehan K. M., Brodeur P. H., Clarke S. H. Organization and expression of VH gene families preferentially expressed by Ly-1+ (CD5) B cells. Eur J Immunol. 1989 Nov;19(11):2115–2121. doi: 10.1002/eji.1830191122. [DOI] [PubMed] [Google Scholar]
  32. Rajewsky K., Förster I., Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1987 Nov 20;238(4830):1088–1094. doi: 10.1126/science.3317826. [DOI] [PubMed] [Google Scholar]
  33. Rasmussen R., Takatsu K., Harada N., Takahashi T., Bottomly K. T cell-dependent hapten-specific and polyclonal B cell responses require release of interleukin 5. J Immunol. 1988 Feb 1;140(3):705–712. [PubMed] [Google Scholar]
  34. Sanderson C. J., Campbell H. D., Young I. G. Molecular and cellular biology of eosinophil differentiation factor (interleukin-5) and its effects on human and mouse B cells. Immunol Rev. 1988 Feb;102:29–50. doi: 10.1111/j.1600-065x.1988.tb00740.x. [DOI] [PubMed] [Google Scholar]
  35. Sonoda E., Matsumoto R., Hitoshi Y., Ishii T., Sugimoto M., Araki S., Tominaga A., Yamaguchi N., Takatsu K. Transforming growth factor beta induces IgA production and acts additively with interleukin 5 for IgA production. J Exp Med. 1989 Oct 1;170(4):1415–1420. doi: 10.1084/jem.170.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  37. Stollar B. D., Papalian M. Secondary structure in denatured DNA is responsible for its reaction with antinative DNA antibodies of systemic lupus erythematosus sera. J Clin Invest. 1980 Aug;66(2):210–219. doi: 10.1172/JCI109846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Swain S. L., McKenzie D. T., Dutton R. W., Tonkonogy S. L., English M. The role of IL4 and IL5: characterization of a distinct helper T cell subset that makes IL4 and IL5 (Th2) and requires priming before induction of lymphokine secretion. Immunol Rev. 1988 Feb;102:77–105. doi: 10.1111/j.1600-065x.1988.tb00742.x. [DOI] [PubMed] [Google Scholar]
  39. Takatsu K., Tanaka K., Tominaga A., Kumahara Y., Hamaoka T. Antigen-induced T cell-replacing factor (TRF). III. Establishment of T cell hybrid clone continuously producing TRF and functional analysis of released TRF. J Immunol. 1980 Dec;125(6):2646–2653. [PubMed] [Google Scholar]
  40. Takatsu K., Tominaga A., Harada N., Mita S., Matsumoto M., Takahashi T., Kikuchi Y., Yamaguchi N. T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol Rev. 1988 Feb;102:107–135. doi: 10.1111/j.1600-065x.1988.tb00743.x. [DOI] [PubMed] [Google Scholar]
  41. Takatsu K., Yamaguchi N., Hitoshi Y., Sonoda E., Mita S., Tominaga A. Signal transduction through interleukin-5 receptors. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 2):745–751. doi: 10.1101/sqb.1989.054.01.088. [DOI] [PubMed] [Google Scholar]
  42. Tominaga A., Matsumoto M., Harada N., Takahashi T., Kikuchi Y., Takatsu K. Molecular properties and regulation of mRNA expression for murine T cell-replacing factor/IL-5. J Immunol. 1988 Feb 15;140(4):1175–1181. [PubMed] [Google Scholar]
  43. Tominaga A., Mita S., Kikuchi Y., Hitoshi Y., Takatsu K., Nishikawa S., Ogawa M. Establishment of IL-5-dependent early B cell lines by long-term bone marrow cultures. Growth Factors. 1989;1(2):135–146. doi: 10.3109/08977198909029123. [DOI] [PubMed] [Google Scholar]
  44. Tominaga A., Takahashi T., Kikuchi Y., Mita S., Naomi S., Harada N., Yamaguchi N., Takatsu K. Role of carbohydrate moiety of IL-5. Effect of tunicamycin on the glycosylation of IL-5 and the biologic activity of deglycosylated IL-5. J Immunol. 1990 Feb 15;144(4):1345–1352. [PubMed] [Google Scholar]
  45. Wetzel G. D. Interleukin 5 regulation of peritoneal Ly-1 B lymphocyte proliferation, differentiation and autoantibody secretion. Eur J Immunol. 1989 Sep;19(9):1701–1707. doi: 10.1002/eji.1830190926. [DOI] [PubMed] [Google Scholar]
  46. Yamaguchi N., Hitoshi Y., Mita S., Hosoya Y., Murata Y., Kikuchi Y., Tominaga A., Takatsu K. Characterization of the murine interleukin 5 receptor by using a monoclonal antibody. Int Immunol. 1990;2(2):181–187. doi: 10.1093/intimm/2.2.181. [DOI] [PubMed] [Google Scholar]
  47. Yamaguchi Y., Hayashi Y., Sugama Y., Miura Y., Kasahara T., Kitamura S., Torisu M., Mita S., Tominaga A., Takatsu K. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med. 1988 May 1;167(5):1737–1742. doi: 10.1084/jem.167.5.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamamura K., Kikutani H., Takahashi N., Taga T., Akira S., Kawai K., Fukuchi K., Kumahara Y., Honjo T., Kishimoto T. Introduction of human gamma 1 immunoglobulin genes into fertilized mouse eggs. J Biochem. 1984 Aug;96(2):357–363. doi: 10.1093/oxfordjournals.jbchem.a134845. [DOI] [PubMed] [Google Scholar]
  49. Yokota T., Coffman R. L., Hagiwara H., Rennick D. M., Takebe Y., Yokota K., Gemmell L., Shrader B., Yang G., Meyerson P. Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: relationship to interleukin 5. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7388–7392. doi: 10.1073/pnas.84.21.7388. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES