Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Mar 1;173(3):771–774. doi: 10.1084/jem.173.3.771

Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8

PMCID: PMC2118810  PMID: 1997655

Abstract

After phagocytosis of yeast opsonized with IgG, neutrophil leukocytes (polymorphonuclear leukocytes [PMN]) expressed high levels of neutrophil-activating peptide 1/interleukin 8 (NAP-1/IL-8) mRNA, which peaked after 3-5 h and were still elevated after 18 h. A similar but quantitatively less prominent effect was obtained with lipopolysaccharide (LPS). After phagocytosis, but not after exposure to LPS, the PMN progressively released considerable amounts of NAP-1/IL-8 into the culture medium (18.6-50 ng/ml in 18 h). The peptide released was biologically active, as indicated by the transient elevation of cytosolic-free calcium in PMN exposed to aliquots of the culture supernatants, and desensitization by prestimulation of the cells with recombinant NAP-1/IL-8. By producing NAP-1/IL-8 at sites where they phagocytose invading microorganisms, PMN could enhance the recruitment of new defense cells.

Full Text

The Full Text of this article is available as a PDF (386.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., Dewald B. Exocytosis by neutrophils. Contemp Top Immunobiol. 1984;14:221–246. doi: 10.1007/978-1-4757-4862-8_8. [DOI] [PubMed] [Google Scholar]
  2. Baggiolini M., Walz A., Kunkel S. L. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 1989 Oct;84(4):1045–1049. doi: 10.1172/JCI114265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cassatella M. A., Bazzoni F., Flynn R. M., Dusi S., Trinchieri G., Rossi F. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J Biol Chem. 1990 Nov 25;265(33):20241–20246. [PubMed] [Google Scholar]
  4. Cassatella M. A., Hartman L., Perussia B., Trinchieri G. Tumor necrosis factor and immune interferon synergistically induce cytochrome b-245 heavy-chain gene expression and nicotinamide-adenine dinucleotide phosphate hydrogenase oxidase in human leukemic myeloid cells. J Clin Invest. 1989 May;83(5):1570–1579. doi: 10.1172/JCI114054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Claesson H. E., Lundberg U., Malmsten C. Serum-coated zymosan stimulates the synthesis of leukotriene B4 in human polymorphonuclear leukocytes. Inhibition by cyclic AMP. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1230–1237. doi: 10.1016/0006-291x(81)90751-8. [DOI] [PubMed] [Google Scholar]
  6. Della Bianca V., Grzeskowiak M., Rossi F. Studies on molecular regulation of phagocytosis and activation of the NADPH oxidase in neutrophils. IgG- and C3b-mediated ingestion and associated respiratory burst independent of phospholipid turnover and Ca2+ transients. J Immunol. 1990 Feb 15;144(4):1411–1417. [PubMed] [Google Scholar]
  7. Dubravec D. B., Spriggs D. R., Mannick J. A., Rodrick M. L. Circulating human peripheral blood granulocytes synthesize and secrete tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6758–6761. doi: 10.1073/pnas.87.17.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leonard E. J., Yoshimura T. Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am J Respir Cell Mol Biol. 1990 Jun;2(6):479–486. doi: 10.1165/ajrcmb/2.6.479. [DOI] [PubMed] [Google Scholar]
  9. Lindley I., Aschauer H., Seifert J. M., Lam C., Brunowsky W., Kownatzki E., Thelen M., Peveri P., Dewald B., von Tscharner V. Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil-activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9199–9203. doi: 10.1073/pnas.85.23.9199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  11. Sánchez-Crespo M., Alonso F., Egido J. Platelet-activating factor in anaphylaxis and phagocytosis. I. Release from human peripheral polymorphonuclears and monocytes during the stimulation by ionophore A23187 and phagocytosis but not from degranulating basophils. Immunology. 1980 Aug;40(4):645–655. [PMC free article] [PubMed] [Google Scholar]
  12. Thelen M., Rosen A., Nairn A. C., Aderem A. Tumor necrosis factor alpha modifies agonist-dependent responses in human neutrophils by inducing the synthesis and myristoylation of a specific protein kinase C substrate. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5603–5607. doi: 10.1073/pnas.87.15.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. 1986 Nov 27-Dec 3Nature. 324(6095):369–372. doi: 10.1038/324369a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES