Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Mar 1;173(3):763–766. doi: 10.1084/jem.173.3.763

High levels of CD44 expression distinguish virgin from antigen-primed B cells

PMCID: PMC2118816  PMID: 1997654

Abstract

The in vitro polyclonal stimulation of B cells through their surface immunoglobulin (Ig) induces substantial increases in CD44 protein levels within 24 hours, whereas other stimuli (e.g., lipopolysaccharide, phorbol 12,13 dibutyrate, and interleukin 4) fail to significantly upregulate CD44. The marked increase in CD44 protein expression on anti-Ig-treated B lymphocytes correlates with an increase in CD44-specific mRNA. Cell sorting experiments with B cells isolated from trinitrophenyl-keyhole limpet hemocyanin-immunized mice demonstrate that both short-term antigen-specific, IgG-secreting cells and long-term antigen-primed B cells are exclusively CD44high. We speculate that the rapid and sustained increase in CD44 expression mediated by surface Ig stimulation may alter the homing properties of antigen-primed B cells.

Full Text

The Full Text of this article is available as a PDF (436.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruffo A., Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8573–8577. doi: 10.1073/pnas.84.23.8573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birkeland M. L., Simpson L., Isakson P. C., Pure E. T-independent and T-dependent steps in the murine B cell response to antiimmunoglobulin. J Exp Med. 1987 Aug 1;166(2):506–519. doi: 10.1084/jem.166.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Budd R. C., Cerottini J. C., Horvath C., Bron C., Pedrazzini T., Howe R. C., MacDonald H. R. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol. 1987 May 15;138(10):3120–3129. [PubMed] [Google Scholar]
  4. Carter W. G. The cooperative role of the transformation-sensitive glycoproteins, GP140 and fibronectin, in cell attachment and spreading. J Biol Chem. 1982 Mar 25;257(6):3249–3257. [PubMed] [Google Scholar]
  5. Carter W. G., Wayner E. A. Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem. 1988 Mar 25;263(9):4193–4201. [PubMed] [Google Scholar]
  6. Forman M. S., Puré E. T-independent and T-dependent B lymphoblasts: helper T cells prime for interleukin 2-induced growth and secretion of immunoglobulins that utilize downstream heavy chains. J Exp Med. 1991 Mar 1;173(3):687–697. doi: 10.1084/jem.173.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jalkanen S., Bargatze R. F., de los Toyos J., Butcher E. C. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85-95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol. 1987 Aug;105(2):983–990. doi: 10.1083/jcb.105.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lafrenz D., Strober S., Vitetta E. The relationship between surface immunoglobulin isotype and the immune function of murine B lymphocytes. V. High affinity secondary antibody responses are transferred by both IgD-positive and IgD-negative memory B cells. J Immunol. 1981 Sep;127(3):867–872. [PubMed] [Google Scholar]
  9. Miyake K., Medina K. L., Hayashi S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990 Feb 1;171(2):477–488. doi: 10.1084/jem.171.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990 Jul 1;172(1):69–75. doi: 10.1084/jem.172.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Murphy T. P., Kolber D. L., Rothstein T. L. Elevated expression of Pgp-1 (Ly-24) by murine peritoneal B lymphocytes. Eur J Immunol. 1990 May;20(5):1137–1142. doi: 10.1002/eji.1830200529. [DOI] [PubMed] [Google Scholar]
  12. Nakache M., Berg E. L., Streeter P. R., Butcher E. C. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature. 1989 Jan 12;337(6203):179–181. doi: 10.1038/337179a0. [DOI] [PubMed] [Google Scholar]
  13. Nottenburg C., Rees G., St John T. Isolation of mouse CD44 cDNA: structural features are distinct from the primate cDNA. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8521–8525. doi: 10.1073/pnas.86.21.8521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Perlmutter R. M., Hansburg D., Briles D. E., Nicolotti R. A., Davie J. M. Subclass restriction of murine anti-carbohydrate antibodies. J Immunol. 1978 Aug;121(2):566–572. [PubMed] [Google Scholar]
  15. Torrigiani G. Quantitative estimation of antibody in the immunoglobulin classes of the mouse. II. Thymic dependence of the different classes. J Immunol. 1972 Jan;108(1):161–164. [PubMed] [Google Scholar]
  16. Trowbridge I. S., Lesley J., Schulte R., Hyman R., Trotter J. Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics. 1982 Mar;15(3):299–312. doi: 10.1007/BF00364338. [DOI] [PubMed] [Google Scholar]
  17. Zan-Bar I., Strober S., Vitetta E. S. The relationship between surface immunoglobulin isotype and immune function of murine B lymphocytes. I. Surface immunoglobulin isotypes on primed B cells in the spleen. J Exp Med. 1977 May 1;145(5):1188–1205. doi: 10.1084/jem.145.5.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zhou D. F., Ding J. F., Picker L. J., Bargatze R. F., Butcher E. C., Goeddel D. V. Molecular cloning and expression of Pgp-1. The mouse homolog of the human H-CAM (Hermes) lymphocyte homing receptor. J Immunol. 1989 Nov 15;143(10):3390–3395. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES