Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Mar 1;173(3):531–538. doi: 10.1084/jem.173.3.531

The cellular basis for lack of antibody response to hepatitis B vaccine in humans

PMCID: PMC2118833  PMID: 1825504

Abstract

We had previously obtained evidence that among normal subjects the humoral antibody response to hepatitis B surface antigen (HBsAg) was bimodally distributed with about 14% of subjects producing less than 1,000 estimated radioimmunoassay RIA units. From the study of major histocompatibility complex (MHC) markers in the very poor responders who produced less than 36 estimated RIA units of antibody, it appeared that there was an excess of homozygotes for two extended haplotypes [HLA-B8, SC01, DR3] and [HLA-B44, FC31, DR7]. This finding suggested that a poor response was inherited as a recessive trait requiring nonresponse genes for HBsAg on both MHC haplotypes and was strengthened by finding a much lower antibody response among prospectively immunized homozygotes for [HLA-B8, SC01, DR3] compared with heterozygotes. In the present study, we have analyzed the cellular basis for nonresponse to this antigen by examining antigen-specific proliferation of T cells from responders and nonresponders in the presence and absence of autologous CD8+ (suppressor) cells. Peripheral blood cells from nonresponders to HBsAg failed to undergo a proliferative response to recombinant HBsAg in vitro, whereas cells from responders proliferated vigorously. This failure of cells from nonresponders to proliferate was not reversed in cell mixtures containing CD4+ and antigen-presenting cells devoid of CD8+ cells. There was no difference between responders and nonresponders with respect to the number of circulating T cells or their subsets, or the proliferative response to mitogens such as pokeweed or phytohemagglutinin or another antigen, tetanus toxoid. Our results indicate that our HBsAg nonresponding subjects have a very specific failure in antigen presentation or the stimulation of T helper cells, or both. Our evidence is against specific immune suppression as the basis for their nonresponsiveness. The failure of antigen presentation or T cell help is consistent with recessive inheritance of nonresponsiveness and suggests that response is dominantly inherited.

Full Text

The Full Text of this article is available as a PDF (786.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper C. A., Kruskall M. S., Marcus-Bagley D., Craven D. E., Katz A. J., Brink S. J., Dienstag J. L., Awdeh Z., Yunis E. J. Genetic prediction of nonresponse to hepatitis B vaccine. N Engl J Med. 1989 Sep 14;321(11):708–712. doi: 10.1056/NEJM198909143211103. [DOI] [PubMed] [Google Scholar]
  2. Alper C. A., Raum D., Karp S., Awdeh Z. L., Yunis E. J. Serum complement 'supergenes' of the major histocompatibility complex in man (complotypes). Vox Sang. 1983;45(1):62–67. doi: 10.1111/j.1423-0410.1983.tb04124.x. [DOI] [PubMed] [Google Scholar]
  3. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  4. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  5. Celis E., Abraham K. G., Miller R. W. Modulation of the immunological response to hepatitis B virus by antibodies. Hepatology. 1987 May-Jun;7(3):563–568. doi: 10.1002/hep.1840070324. [DOI] [PubMed] [Google Scholar]
  6. Celis E., Chang T. W. Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science. 1984 Apr 20;224(4646):297–299. doi: 10.1126/science.6231724. [DOI] [PubMed] [Google Scholar]
  7. Celis E., Kung P. C., Chang T. W. Hepatitis B virus-reactive human T lymphocyte clones: antigen specificity and helper function for antibody synthesis. J Immunol. 1984 Mar;132(3):1511–1516. [PubMed] [Google Scholar]
  8. Celis E., Zurawski V. R., Jr, Chang T. W. Regulation of T-cell function by antibodies: enhancement of the response of human T-cell clones to hepatitis B surface antigen by antigen-specific monoclonal antibodies. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6846–6850. doi: 10.1073/pnas.81.21.6846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiou S. S., Yamauchi K., Nakanishi T., Obata H. Nature of immunological non-responsiveness to hepatitis B vaccine in healthy individuals. Immunology. 1988 Jul;64(3):545–550. [PMC free article] [PubMed] [Google Scholar]
  10. Craven D. E., Awdeh Z. L., Kunches L. M., Yunis E. J., Dienstag J. L., Werner B. G., Polk B. F., Syndman D. R., Platt R., Crumpacker C. S. Nonresponsiveness to hepatitis B vaccine in health care workers. Results of revaccination and genetic typings. Ann Intern Med. 1986 Sep;105(3):356–360. doi: 10.7326/0003-4819-105-3-356. [DOI] [PubMed] [Google Scholar]
  11. Cupps T. R., Gerin J. L., Purcell R. H., Goldsmith P. K., Fauci A. S. In vitro antigen-induced antibody responses to hepatitis B surface antigen in man. Kinetic and cellular requirements. J Clin Invest. 1984 Oct;74(4):1204–1213. doi: 10.1172/JCI111529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dos Reis G. A., Shevach E. M. Antigen-presenting cells from nonresponder strain 2 guinea pigs are fully competent to present bovine insulin B chain to responder strain 13 T cells. Evidence against a determinant selection model and in favor of a clonal deletion model of immune response gene function. J Exp Med. 1983 Apr 1;157(4):1287–1299. doi: 10.1084/jem.157.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Green I., Paul W. E., Benacerraf B. The behavior of hapten-poly-L-lysine conjugates as complete antigens in genetic responder and as haptens in nonresponder guinea pigs. J Exp Med. 1966 May 1;123(5):859–879. doi: 10.1084/jem.123.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanson R. G., Hoofnagle J. H., Minuk G. Y., Purcell R. H., Gerin J. L. Cell-mediated immunity to hepatitis B surface antigen in man. Clin Exp Immunol. 1984 Aug;57(2):257–264. [PMC free article] [PubMed] [Google Scholar]
  15. Hirayama K., Matsushita S., Kikuchi I., Iuchi M., Ohta N., Sasazuki T. HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature. 1987 Jun 4;327(6121):426–430. doi: 10.1038/327426a0. [DOI] [PubMed] [Google Scholar]
  16. Hollinger F. B. Hepatitis B vaccines--to switch or not to switch. JAMA. 1987 May 15;257(19):2634–2636. [PubMed] [Google Scholar]
  17. Hsu S. H., Chan M. M., Bias W. B. Genetic control of major histocompatibility complex-linked immune responses to synthetic polypeptides in man. Proc Natl Acad Sci U S A. 1981 Jan;78(1):440–444. doi: 10.1073/pnas.78.1.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ishii N., Nagy Z. A., Klein J. Absence of Ir gene control of T cells recognizing foreign antigen in the context of allogenic MHC molecules. Nature. 1982 Feb 11;295(5849):531–533. doi: 10.1038/295531a0. [DOI] [PubMed] [Google Scholar]
  19. Katz D., Bentwich Z., Eshhar N., Löwy I., Mozes E. Immune response potential to poly(Tyr,Glu)-poly(DLAla)--poly(Lys) of human T cells of different donors. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4505–4509. doi: 10.1073/pnas.78.7.4505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kikuchi I., Ozawa T., Hirayama K., Sasazuki T. An HLA-linked gene controls susceptibility to lepromatous leprosy through T cell regulation. Lepr Rev. 1986 Dec;57 (Suppl 2):139–142. doi: 10.5935/0305-7518.19860064. [DOI] [PubMed] [Google Scholar]
  21. Loken M. R., Herzenber L. A. Analysis of cell populations with a fluorescence-activated cell sorter. Ann N Y Acad Sci. 1975 Jun 30;254:163–171. doi: 10.1111/j.1749-6632.1975.tb29166.x. [DOI] [PubMed] [Google Scholar]
  22. Matsushita S., Muto M., Suemura M., Saito Y., Sasazuki T. HLA-linked nonresponsiveness to Cryptomeria japonica pollen antigen. I. Nonresponsiveness is mediated by antigen-specific suppressor T cell. J Immunol. 1987 Jan 1;138(1):109–115. [PubMed] [Google Scholar]
  23. Milich D. R., Chisari F. V. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). I. H-2 restriction of the murine humoral immune response to the a and d determinants of HBsAg. J Immunol. 1982 Jul;129(1):320–325. [PubMed] [Google Scholar]
  24. Milich D. R. Immunogenetic analysis of the immune response to hepatitis B virus antigens. Immunol Ser. 1989;43:523–560. [PubMed] [Google Scholar]
  25. Milich D. R., Leroux-Roels G. G., Chisari F. V. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). II. Qualitative characteristics of the humoral immune response to the a, d, and y determinants of HBsAg. J Immunol. 1983 Mar;130(3):1395–1400. [PubMed] [Google Scholar]
  26. Milich D. R., Leroux-Roels G. G., Louie R. E., Chisari F. V. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). IV. Distinct H-2-linked Ir genes control antibody responses to different HBsAg determinants on the same molecule and map to the I-A and I-C subregions. J Exp Med. 1984 Jan 1;159(1):41–56. doi: 10.1084/jem.159.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Milich D. R., Thornton G. B., Neurath A. R., Kent S. B., Michel M. L., Tiollais P., Chisari F. V. Enhanced immunogenicity of the pre-S region of hepatitis B surface antigen. Science. 1985 Jun 7;228(4704):1195–1199. doi: 10.1126/science.2408336. [DOI] [PubMed] [Google Scholar]
  28. Morimoto C., Letvin N. L., Boyd A. W., Hagan M., Brown H. M., Kornacki M. M., Schlossman S. F. The isolation and characterization of the human helper inducer T cell subset. J Immunol. 1985 Jun;134(6):3762–3769. [PubMed] [Google Scholar]
  29. Morimoto C., Letvin N. L., Distaso J. A., Aldrich W. R., Schlossman S. F. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 Mar;134(3):1508–1515. [PubMed] [Google Scholar]
  30. Morimoto C., Letvin N. L., Distaso J. A., Brown H. M., Schlossman S. F. The cellular basis for the induction of antigen-specific T8 suppressor cells. Eur J Immunol. 1986 Feb;16(2):198–204. doi: 10.1002/eji.1830160216. [DOI] [PubMed] [Google Scholar]
  31. Morimoto C., Reinherz E. L., Borel Y., Mantzouranis E., Steinberg A. D., Schlossman S. F. Autoantibody to an immunoregulatory inducer population in patients with juvenile rheumatoid arthritis. J Clin Invest. 1981 Mar;67(3):753–761. doi: 10.1172/JCI110092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Muirhead K. A., Schmitt T. C., Muirhead A. R. Determination of linear fluorescence intensities from flow cytometric data accumulated with logarithmic amplifiers. Cytometry. 1983 Jan;3(4):251–256. doi: 10.1002/cyto.990030404. [DOI] [PubMed] [Google Scholar]
  33. Nowicki M. J., Tong M. J., Bohman R. E. Alterations in the immune response of nonresponders to the hepatitis B vaccine. J Infect Dis. 1985 Dec;152(6):1245–1248. doi: 10.1093/infdis/152.6.1245. [DOI] [PubMed] [Google Scholar]
  34. Ohta N., Minai M., Sasazuki T. Antigen-specific suppressor T lymphocytes (Leu-2a+3a-) in human schistosomiasis japonica. J Immunol. 1983 Nov;131(5):2524–2528. [PubMed] [Google Scholar]
  35. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scher I., Berning A. K., Strong D. M., Green I. The immune response to a synthetic amino acid terpolymer in man: relationship to HL-A type. J Immunol. 1975 Jul;115(1):36–40. [PubMed] [Google Scholar]
  37. Solinger A. M., Bhatnagar R., Stobo J. D. Cellular, molecular, and genetic characteristics of T cell reactivity to collagen in man. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3877–3881. doi: 10.1073/pnas.78.6.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sone T., Tsukamoto K., Hirayama K., Nishimura Y., Takenouchi T., Aizawa M., Sasazuki T. Two distinct class II molecules encoded by the genes within HLA-DR subregion of HLA-Dw2 and Dw12 can act as stimulating and restriction molecules. J Immunol. 1985 Aug;135(2):1288–1298. [PubMed] [Google Scholar]
  39. Stevens C. E., Alter H. J., Taylor P. E., Zang E. A., Harley E. J., Szmuness W. Hepatitis B vaccine in patients receiving hemodialysis. Immunogenicity and efficacy. N Engl J Med. 1984 Aug 23;311(8):496–501. doi: 10.1056/NEJM198408233110803. [DOI] [PubMed] [Google Scholar]
  40. Szmuness W., Stevens C. E., Harley E. J., Zang E. A., Oleszko W. R., William D. C., Sadovsky R., Morrison J. M., Kellner A. Hepatitis B vaccine: demonstration of efficacy in a controlled clinical trial in a high-risk population in the United States. N Engl J Med. 1980 Oct 9;303(15):833–841. doi: 10.1056/NEJM198010093031501. [DOI] [PubMed] [Google Scholar]
  41. Szmuness W., Stevens C. E., Zang E. A., Harley E. J., Kellner A. A controlled clinical trial of the efficacy of the hepatitis B vaccine (Heptavax B): a final report. Hepatology. 1981 Sep-Oct;1(5):377–385. doi: 10.1002/hep.1840010502. [DOI] [PubMed] [Google Scholar]
  42. Wahl M., Hermodsson S. Intradermal, subcutaneous or intramuscular administration of hepatitis B vaccine: side effects and antibody response. Scand J Infect Dis. 1987;19(6):617–621. doi: 10.3109/00365548709117195. [DOI] [PubMed] [Google Scholar]
  43. Watanabe H., Matsushita S., Kamikawaji N., Hirayama K., Okumura M., Sasazuki T. Immune suppression gene on HLA-Bw54-DR4-DRw53 haplotype controls nonresponsiveness in humans to hepatitis B surface antigen via CD8+ suppressor T cells. Hum Immunol. 1988 May;22(1):9–17. doi: 10.1016/0198-8859(88)90047-x. [DOI] [PubMed] [Google Scholar]
  44. de Lalla F., Rinaldi E., Santoro D., Pravettoni G. Immune response to hepatitis B vaccine given at different injection sites and by different routes: a controlled randomized study. Eur J Epidemiol. 1988 Jun;4(2):256–258. doi: 10.1007/BF00144763. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES