Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 May 1;173(5):1099–1109. doi: 10.1084/jem.173.5.1099

Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes

PMCID: PMC2118839  PMID: 2022921

Abstract

Cytotoxic T lymphocytes (CTL) contain granules that are exocytosed during specific interaction with target cells (TC). In this process, the granule contents, including the lethal protein perforin, as well as granzymes, a family of serine esterases, are delivered to the TC. Information regarding the routing of these proteins towards the granule and their exact localization within the granule is of primary importance to resolve the mechanism of granule-mediated TC killing. In this study, the subcellular localization of perforin, granzymes, and known endosomal and lysosomal marker proteins was determined in human and murine CTL, by immunogold labeling of ultrathin cryosections followed by electron microscopy. Perforin and granzymes can be detected in rough endoplasmic reticulum, Golgi complex, trans-Golgi reticulum, and in all cytotoxic granules. Within the granules, they have a similar distribution and are localized not only in the so-called dense core but also over the region containing small internal vesicles. This finding implies that perforin and granzymes can be released in membrane- enveloped and/or -associated form into the intercellular cleft formed upon CTL-TC interaction. On the basis of the present evidence, additional release of these molecules in soluble form cannot be excluded. The lysosomal membrane glycoproteins lamp-1, lamp-2, and CD63, are abundantly present on the granule-delimiting outer membrane, which becomes incorporated into the CTL plasma membrane during lethal hit delivery. In contrast, the cation-dependent mannose 6-phosphate receptor, known to be present in endosomes and absent from lysosomes, is found only in a minority of the granules. Together with our previous findings that the granules are acidic and connected to the endocytic pathway, these observations define CTL granules as secretory lysosomes.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acha-Orbea H., Scarpellino L., Hertig S., Dupuis M., Tschopp J. Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO J. 1990 Dec;9(12):3815–3819. doi: 10.1002/j.1460-2075.1990.tb07599.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baron R., Neff L., Brown W., Courtoy P. J., Louvard D., Farquhar M. G. Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol. 1988 Jun;106(6):1863–1872. doi: 10.1083/jcb.106.6.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borst J., Spits H., Voordouw A., de Vries E., Boylston A., de Vries J. E. A family of T-cell receptor molecules expressed on T-cell clones with different specificities for allomajor histocompatibility antigens. Hum Immunol. 1986 Dec;17(4):426–442. doi: 10.1016/0198-8859(86)90302-2. [DOI] [PubMed] [Google Scholar]
  4. Borst J., de Vries E., Spits H., de Vries J. E., Boylston A. W., Matthews E. A. Complexity of T cell receptor recognition sites for defined alloantigens. J Immunol. 1987 Sep 15;139(6):1952–1959. [PubMed] [Google Scholar]
  5. Burkhardt J. K., Hester S., Argon Y. Two proteins targeted to the same lytic granule compartment undergo very different posttranslational processing. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7128–7132. doi: 10.1073/pnas.86.18.7128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlsson S. R., Roth J., Piller F., Fukuda M. Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J Biol Chem. 1988 Dec 15;263(35):18911–18919. [PubMed] [Google Scholar]
  7. Clark W., Ostergaard H., Gorman K., Torbett B. Molecular mechanisms of CTL-mediated lysis: a cellular perspective. Immunol Rev. 1988 Mar;103:37–51. doi: 10.1111/j.1600-065x.1988.tb00748.x. [DOI] [PubMed] [Google Scholar]
  8. Dennert G., Podack E. R. Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J Exp Med. 1983 May 1;157(5):1483–1495. doi: 10.1084/jem.157.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geuze H. J., Slot J. W., Strous G. J., Hasilik A., von Figura K. Possible pathways for lysosomal enzyme delivery. J Cell Biol. 1985 Dec;101(6):2253–2262. doi: 10.1083/jcb.101.6.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geuze H. J., Stoorvogel W., Strous G. J., Slot J. W., Bleekemolen J. E., Mellman I. Sorting of mannose 6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles. J Cell Biol. 1988 Dec;107(6 Pt 2):2491–2501. doi: 10.1083/jcb.107.6.2491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
  12. Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986 Oct 24;234(4775):438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
  13. Groscurth P., Qiao B. Y., Podack E. R., Hengartner H. Cellular localization of perforin 1 in murine cloned cytotoxic T lymphocytes. J Immunol. 1987 May 1;138(9):2749–2752. [PubMed] [Google Scholar]
  14. Hameed A., Lowrey D. M., Lichtenheld M., Podack E. R. Characterization of three serine esterases isolated from human IL-2 activated killer cells. J Immunol. 1988 Nov 1;141(9):3142–3147. [PubMed] [Google Scholar]
  15. Hayes M. P., Berrebi G. A., Henkart P. A. Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med. 1989 Sep 1;170(3):933–946. doi: 10.1084/jem.170.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henkart P. A., Berrebi G. A., Takayama H., Munger W. E., Sitkovsky M. V. Biochemical and functional properties of serine esterases in acidic cytoplasmic granules of cytotoxic T lymphocytes. J Immunol. 1987 Oct 1;139(7):2398–2405. [PubMed] [Google Scholar]
  17. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  18. Huttner W. B., Tooze S. A. Biosynthetic protein transport in the secretory pathway. Curr Opin Cell Biol. 1989 Aug;1(4):648–654. doi: 10.1016/0955-0674(89)90029-x. [DOI] [PubMed] [Google Scholar]
  19. Jenne D., Rey C., Haefliger J. A., Qiao B. Y., Groscurth P., Tschopp J. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4814–4818. doi: 10.1073/pnas.85.13.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kamada M. M., Michon J., Ritz J., Holldack J., Serafin W. E., Austen K. F., MacDermott R. P., Stevens R. L. Identification of carboxypeptidase and tryptic esterase activities that are complexed to proteoglycans in the secretory granules of human cloned natural killer cells. J Immunol. 1989 Jan 15;142(2):609–615. [PubMed] [Google Scholar]
  21. Klausner R. D. Sorting and traffic in the central vacuolar system. Cell. 1989 Jun 2;57(5):703–706. doi: 10.1016/0092-8674(89)90783-6. [DOI] [PubMed] [Google Scholar]
  22. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  23. Kramer M. D., Fruth U., Simon H. G., Simon M. M. Expression of cytoplasmic granules with T cell-associated serine proteinase-1 activity in Ly-2+(CD8+) T lymphocytes responding to lymphocytic choriomeningitis virus in vivo. Eur J Immunol. 1989 Jan;19(1):151–156. doi: 10.1002/eji.1830190124. [DOI] [PubMed] [Google Scholar]
  24. Krähenbühl O., Rey C., Jenne D., Lanzavecchia A., Groscurth P., Carrel S., Tschopp J. Characterization of granzymes A and B isolated from granules of cloned human cytotoxic T lymphocytes. J Immunol. 1988 Nov 15;141(10):3471–3477. [PubMed] [Google Scholar]
  25. Lichtenheld M. G., Olsen K. J., Lu P., Lowrey D. M., Hameed A., Hengartner H., Podack E. R. Structure and function of human perforin. Nature. 1988 Sep 29;335(6189):448–451. doi: 10.1038/335448a0. [DOI] [PubMed] [Google Scholar]
  26. Liu C. C., Perussia B., Cohn Z. A., Young J. D. Identification and characterization of a pore-forming protein of human peripheral blood natural killer cells. J Exp Med. 1986 Dec 1;164(6):2061–2076. doi: 10.1084/jem.164.6.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lowrey D. M., Aebischer T., Olsen K., Lichtenheld M., Rupp F., Hengartner H., Podack E. R. Cloning, analysis, and expression of murine perforin 1 cDNA, a component of cytolytic T-cell granules with homology to complement component C9. Proc Natl Acad Sci U S A. 1989 Jan;86(1):247–251. doi: 10.1073/pnas.86.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MacDermott R. P., Schmidt R. E., Caulfield J. P., Hein A., Bartley G. T., Ritz J., Schlossman S. F., Austen K. F., Stevens R. L. Proteoglycans in cell-mediated cytotoxicity. Identification, localization, and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis. J Exp Med. 1985 Dec 1;162(6):1771–1787. doi: 10.1084/jem.162.6.1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
  30. Müller C., Kägi D., Aebischer T., Odermatt B., Held W., Podack E. R., Zinkernagel R. M., Hengartner H. Detection of perforin and granzyme A mRNA in infiltrating cells during infection of mice with lymphocytic choriomeningitis virus. Eur J Immunol. 1989 Jul;19(7):1253–1259. doi: 10.1002/eji.1830190716. [DOI] [PubMed] [Google Scholar]
  31. Nagler-Anderson C., Lichtenheld M., Eisen H. N., Podack E. R. Perforin mRNA in primary peritoneal exudate cytotoxic T lymphocytes. J Immunol. 1989 Dec 1;143(11):3440–3443. [PubMed] [Google Scholar]
  32. Patterson S., Byrne J. A., Lampert P. W., Oldstone M. B. Morphologic analysis of the interactions between lymphocytic choriomeningitis virus-specific cloned cytotoxic T cells and virus infected targets. Lab Invest. 1987 Jul;57(1):29–36. [PubMed] [Google Scholar]
  33. Peters P. J., Geuze H. J., Van der Donk H. A., Slot J. W., Griffith J. M., Stam N. J., Clevers H. C., Borst J. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989 Aug;19(8):1469–1475. doi: 10.1002/eji.1830190819. [DOI] [PubMed] [Google Scholar]
  34. Peters P. J., Geuze H. J., van der Donk H. A., Borst J. A new model for lethal hit delivery by cytotoxic T lymphocytes. Immunol Today. 1990 Jan;11(1):28–32. doi: 10.1016/0167-5699(90)90008-w. [DOI] [PubMed] [Google Scholar]
  35. Peters P. J., Neefjes J. J., Oorschot V., Ploegh H. L., Geuze H. J. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature. 1991 Feb 21;349(6311):669–676. doi: 10.1038/349669a0. [DOI] [PubMed] [Google Scholar]
  36. Podack E. R., Lowrey D. M., Lichtenheld M., Olsen K. J., Aebischer T., Binder D., Rupp F., Hengartner H. Structure, function and expression of murine and human perforin 1 (P1). Immunol Rev. 1988 Mar;103:203–211. doi: 10.1111/j.1600-065x.1988.tb00756.x. [DOI] [PubMed] [Google Scholar]
  37. Schmidt R. E., Caulfield J. P., Michon J., Hein A., Kamada M. M., MacDermott R. P., Stevens R. L., Ritz J. T11/CD2 activation of cloned human natural killer cells results in increased conjugate formation and exocytosis of cytolytic granules. J Immunol. 1988 Feb 1;140(3):991–1002. [PubMed] [Google Scholar]
  38. Schmidt R. E., MacDermott R. P., Bartley G., Bertovich M., Amato D. A., Austen K. F., Schlossman S. F., Stevens R. L., Ritz J. Specific release of proteoglycans from human natural killer cells during target lysis. Nature. 1985 Nov 21;318(6043):289–291. doi: 10.1038/318289a0. [DOI] [PubMed] [Google Scholar]
  39. Shinkai Y., Takio K., Okumura K. Homology of perforin to the ninth component of complement (C9). Nature. 1988 Aug 11;334(6182):525–527. doi: 10.1038/334525a0. [DOI] [PubMed] [Google Scholar]
  40. Tschopp J., Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol. 1990;8:279–302. doi: 10.1146/annurev.iy.08.040190.001431. [DOI] [PubMed] [Google Scholar]
  41. Young J. D., Cohn Z. A. Cell-mediated killing: a common mechanism? Cell. 1986 Aug 29;46(5):641–642. doi: 10.1016/0092-8674(86)90336-3. [DOI] [PubMed] [Google Scholar]
  42. Young L. H., Peterson L. B., Wicker L. S., Persechini P. M., Young J. D. In vivo expression of perforin by CD8+ lymphocytes in autoimmune disease. Studies on spontaneous and adoptively transferred diabetes in nonobese diabetic mice. J Immunol. 1989 Dec 15;143(12):3994–3999. [PubMed] [Google Scholar]
  43. Yssel H., De Vries J. E., Koken M., Van Blitterswijk W., Spits H. Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J Immunol Methods. 1984 Aug 3;72(1):219–227. doi: 10.1016/0022-1759(84)90450-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES