Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 May 1;173(5):1053–1063. doi: 10.1084/jem.173.5.1053

Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function

PMCID: PMC2118841  PMID: 1850779

Abstract

The activation, proliferation, and antiviral properties of natural killer (NK) cells were examined in severe combined immunodeficiency (SCID) mice to determine the influence of mature T or B cells on virus- induced NK cell functions and to more conclusively determine the antiviral properties of prototypical CD3- NK cells. NK cells were activated to high levels of cytotoxicity 3 d after infection of mice with lymphocytic choriomeningitis virus (LCMV) or murine cytomegalovirus (MCMV). Analyses of spleen leukocytes from LCMV- infected mice by a variety of techniques indicated that the NK cells proliferated and increased in number during infection. Propidium iodide staining of the DNA of cycling cells revealed that the great majority of proliferating spleen leukocytes 3 d after LCMV infection was of the NK cell phenotype (CD3-, Ig-, Mac-1+, CZ1+, 50% Thy-1+), in contrast to uninfected mice, whose proliferating cells were predominantly of other lineages. Analyses of the NK cell responses over a 2 wk period in control CB17 mice infected with MCMV indicated a sharp rise in serum interferon (IFN) and spleen NK cell activity early (days 3-5) in infection, followed by sharp declines at later stages. In SCID mice the IFN levels continued to rise over a 10-d period, whereas the NK cell response peaked on day 3-5 and gradually tapered. In contrast to the immunocompetent CB17 mice, SCID mice did not clear the MCMV infection and eventually succumbed. SCID mice, again in contrast to immunocompetent CB17 mice, also failed to clear infections with LCMV and Pichinde virus (PV); these mice, infected as adults, did not die but instead developed long-term persistent infections. Depletion of the NK cells in vivo with antiserum to asialo GM1 rendered both SCID and CB17 control mice much more sensitive to MCMV infection, as shown by titers of virus in organs and by survival curves. In contrast, similar depletions of NK cells did not enhance the titers of the NK cell- resistant virus, LCMV. Two variants of PV, one sensitive to NK cells and the other selected for resistance to NK cells by in vivo passage, were also tested in NK cell-depleted SCID mice. The NK-sensitive PV replicated to higher titers in NK cell-depleted SCID mice, whereas the titers of the NK cell-resistant PV were the same, whether or not the mice had NK cells. These experiments support the concept that CD3- prototypical NK cells mediate resistance to NK cell-sensitive viruses via a mechanism independent of antiviral or "natural" antibody.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai S., Yamamoto H., Itoh K., Kumagai K. Suppressive effect of human natural killer cells on pokeweed mitogen-induced B cell differentiation. J Immunol. 1983 Aug;131(2):651–657. [PubMed] [Google Scholar]
  2. Balkwill F. R., Burke F. The cytokine network. Immunol Today. 1989 Sep;10(9):299–304. doi: 10.1016/0167-5699(89)90085-6. [DOI] [PubMed] [Google Scholar]
  3. Biron C. A., Pedersen K. F., Welsh R. M. Purification and target cell range of in vivo elicited blast natural killer cells. J Immunol. 1986 Jul 15;137(2):463–471. [PubMed] [Google Scholar]
  4. Biron C. A., Turgiss L. R., Welsh R. M. Increase in NK cell number and turnover rate during acute viral infection. J Immunol. 1983 Sep;131(3):1539–1545. [PubMed] [Google Scholar]
  5. Biron C. A., Welsh R. M. Blastogenesis of natural killer cells during viral infection in vivo. J Immunol. 1982 Dec;129(6):2788–2795. [PubMed] [Google Scholar]
  6. Biron C. A., Young H. A., Kasaian M. T. Interleukin 2-induced proliferation of murine natural killer cells in vivo. J Exp Med. 1990 Jan 1;171(1):173–188. doi: 10.1084/jem.171.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  8. Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
  9. Buchmeier M. J., Rawls W. E. Variation between strains of hamsters in the lethality of Pichinde virus infections. Infect Immun. 1977 May;16(2):413–421. doi: 10.1128/iai.16.2.413-421.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  11. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983 Sep;131(3):1531–1538. [PubMed] [Google Scholar]
  12. Bukowski J. F., Yang H., Welsh R. M. Antiviral effect of lymphokine-activated killer cells: characterization of effector cells mediating prophylaxis. J Virol. 1988 Oct;62(10):3642–3648. doi: 10.1128/jvi.62.10.3642-3648.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark E. A., Harmon R. C. Genetic control of natural cytotoxicity and hybrid resistance. Adv Cancer Res. 1980;31:227–285. doi: 10.1016/s0065-230x(08)60659-4. [DOI] [PubMed] [Google Scholar]
  14. Clark E. A., Russell P. H., Egghart M., Horton M. A. Characteristics and genetic control of NK-cell-mediated cytotoxicity activated by naturally acquired infection in the mouse. Int J Cancer. 1979 Nov 15;24(5):688–699. doi: 10.1002/ijc.2910240525. [DOI] [PubMed] [Google Scholar]
  15. Crissman H. A., Steinkamp J. A. Rapid, one step staining procedures for analysis of cellular DNA and protein by single and dual laser flow cytometry. Cytometry. 1982 Sep;3(2):84–90. doi: 10.1002/cyto.990030204. [DOI] [PubMed] [Google Scholar]
  16. Doyle M. V., Oldstone M. B. Interactions between viruses and lymphocytes. I. In vivo replication of lymphocytic choriomeningitis virus in mononuclear cells during both chronic and acute viral infections. J Immunol. 1978 Oct;121(4):1262–1269. [PubMed] [Google Scholar]
  17. George A., Kost S. I., Witzleben C. L., Cebra J. J., Rubin D. H. Reovirus-induced liver disease in severe combined immunodeficient (SCID) mice. A model for the study of viral infection, pathogenesis, and clearance. J Exp Med. 1990 Mar 1;171(3):929–934. doi: 10.1084/jem.171.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gidlund M., Orn A., Wigzell H., Senik A., Gresser I. Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature. 1978 Jun 29;273(5665):759–761. doi: 10.1038/273759a0. [DOI] [PubMed] [Google Scholar]
  19. Gresser I., Brouty-Boyé D., Thomas M. T., Macieira-Coelho A. Interferon and cell division. I. Inhibition of the multiplication of mouse leukemia L 1210 cells in vitro by interferon preparations. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1052–1058. doi: 10.1073/pnas.66.4.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okumura K., Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981 Jul;127(1):34–38. [PubMed] [Google Scholar]
  21. Hansson M., Kiessling R., Andersson B. Human fetal thymus and bone marrow contain target cells for natural killer cells. Eur J Immunol. 1981 Jan;11(1):8–12. doi: 10.1002/eji.1830110103. [DOI] [PubMed] [Google Scholar]
  22. Hansson M., Kärre K., Kiessling R., Roder J., Andersson B., Häyry P. Natural NK-cell targets in the mouse thymus: characteristics of the sensitive cell population. J Immunol. 1979 Aug;123(2):765–771. [PubMed] [Google Scholar]
  23. Herberman R. B., Bartram S., Haskill J. S., Nunn M., Holden H. T., West W. H. Fc receptors on mouse effector cells mediating natural cytotoxicity against tumor cells. J Immunol. 1977 Jul;119(1):322–326. [PubMed] [Google Scholar]
  24. Herberman R. B., Nunn M. E., Holden H. T. Low density of Thy 1 antigen on mouse effector cells mediating natural cytotoxicity against tumor cells. J Immunol. 1978 Jul;121(1):304–309. [PubMed] [Google Scholar]
  25. Kasaian M. T., Biron C. A. The activation of IL-2 transcription in L3T4+ and Lyt-2+ lymphocytes during virus infection in vivo. J Immunol. 1989 Feb 15;142(4):1287–1292. [PubMed] [Google Scholar]
  26. Kiessling R., Hochman P. S., Haller O., Shearer G. M., Wigzell H., Cudkowicz G. Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol. 1977 Sep;7(9):655–663. doi: 10.1002/eji.1830070915. [DOI] [PubMed] [Google Scholar]
  27. Kumar V., Ben-Ezra J., Bennett M., Sonnenfeld G. Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol. 1979 Oct;123(4):1832–1838. [PubMed] [Google Scholar]
  28. Kuribayashi K., Gillis S., Kern D. E., Henney C. S. Murine NK cell cultures: effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol. 1981 Jun;126(6):2321–2327. [PubMed] [Google Scholar]
  29. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McIntyre K. W., Natuk R. J., Biron C. A., Kase K., Greenberger J., Welsh R. M. Blastogenesis of large granular lymphocytes in nonlymphoid organs. J Leukoc Biol. 1988 Jun;43(6):492–501. doi: 10.1002/jlb.43.6.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Migliorati G., Cannarile L., Herberman R. B., Bartocci A., Stanley E. R., Riccardi C. Role of interleukin 2 (IL 2) and hemopoietin-1 (H-1) in the generation of mouse natural killer (NK) cells from primitive bone marrow precursors. J Immunol. 1987 Jun 1;138(11):3618–3625. [PubMed] [Google Scholar]
  32. Natuk R. J., Welsh R. M. Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J Immunol. 1987 Feb 1;138(3):877–883. [PubMed] [Google Scholar]
  33. Natuk R. J., Welsh R. M. Chemotactic effect of human recombinant interleukin 2 on mouse activated large granular lymphocytes. J Immunol. 1987 Oct 15;139(8):2737–2743. [PubMed] [Google Scholar]
  34. Ojo E., Wigzell H. Natural killer cells may be the only cells in normal mouse lymphoid cell populations endowed with cytolytic ability for antibody-coated tumour target cells. Scand J Immunol. 1978 Apr;7(4):297–306. doi: 10.1111/j.1365-3083.1978.tb00457.x. [DOI] [PubMed] [Google Scholar]
  35. Olding L. B., Jensen F. C., Oldstone M. B. Pathogenesis of of cytomegalovirus infection. I. Activation of virus from bone marrow-derived lymphocytes by in vitro allogenic reaction. J Exp Med. 1975 Mar 1;141(3):561–572. doi: 10.1084/jem.141.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pape G. R., Troye M., Axelsson B., Perlmann P. Simultaneous occurrence of immunoglobulin-dependent and immunoglobulin-independent mechanisms in natural cytotoxicity of human lymphocytes. J Immunol. 1979 Jun;122(6):2251–2260. [PubMed] [Google Scholar]
  37. Popescu M., Löhler J., Lehmann-Grube F. Infectious lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Z Naturforsch C. 1977 Nov-Dec;32(11-12):1026–1028. doi: 10.1515/znc-1977-11-1228. [DOI] [PubMed] [Google Scholar]
  38. Pross H. F., Baines M. G., Rubin P., Shragge P., Patterson M. S. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity. J Clin Immunol. 1981 Jan;1(1):51–63. doi: 10.1007/BF00915477. [DOI] [PubMed] [Google Scholar]
  39. Samuel C. E. Mechanisms of the antiviral action of interferons. Prog Nucleic Acid Res Mol Biol. 1988;35:27–72. doi: 10.1016/s0079-6603(08)60609-1. [DOI] [PubMed] [Google Scholar]
  40. Selgrade M. K., Nedrud J. G., Collier A. M., Gardner D. E. Effects of cell source, mouse strain, and immunosuppressive treatment on production of virulent and attenuated murine cytomegalovirus. Infect Immun. 1981 Sep;33(3):840–847. doi: 10.1128/iai.33.3.840-847.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sentman C. L., Kumar V., Koo G., Bennett M. Effector cell expression of NK1.1, a murine natural killer cell-specific molecule, and ability of mice to reject bone marrow allografts. J Immunol. 1989 Mar 15;142(6):1847–1853. [PubMed] [Google Scholar]
  42. Shah P. D., Gilbertson S. M., Rowley D. A. Dendritic cells that have interacted with antigen are targets for natural killer cells. J Exp Med. 1985 Aug 1;162(2):625–636. doi: 10.1084/jem.162.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Springer T., Galfré G., Secher D. S., Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979 Apr;9(4):301–306. doi: 10.1002/eji.1830090410. [DOI] [PubMed] [Google Scholar]
  44. Welsh R. M., Dundon P. L., Eynon E. E., Brubaker J. O., Koo G. C., O'Donnell C. L. Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK 1.1). Nat Immun Cell Growth Regul. 1990;9(2):112–120. [PubMed] [Google Scholar]
  45. Welsh R. M., Jr Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction. J Exp Med. 1978 Jul 1;148(1):163–181. doi: 10.1084/jem.148.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Welsh R. M., Jr, Kiessling R. W. Natural killer cell response to lymphocytic choriomeningitis virus in beige mice. Scand J Immunol. 1980;11(4):363–367. doi: 10.1111/j.1365-3083.1980.tb00001.x. [DOI] [PubMed] [Google Scholar]
  47. Welsh R. M. Natural killer cells and interferon. Crit Rev Immunol. 1984;5(1):55–93. [PubMed] [Google Scholar]
  48. Welsh R. M. Regulation of virus infections by natural killer cells. A review. Nat Immun Cell Growth Regul. 1986;5(4):169–199. [PubMed] [Google Scholar]
  49. Yankelevich B., Knobloch C., Nowicki M., Dennert G. A novel cell type responsible for marrow graft rejection in mice. T cells with NK phenotype cause acute rejection of marrow grafts. J Immunol. 1989 May 15;142(10):3423–3430. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES