Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 May 1;173(5):1267–1279. doi: 10.1084/jem.173.5.1267

Premature expression of the macrophage colony-stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture

PMCID: PMC2118849  PMID: 1708812

Abstract

We are interested to know whether expression of a lineage-specific growth factor receptor is deterministic to lineage commitment during hematopoiesis. For this purpose, we introduced the human c-fms gene into the multipotential stem cell clone LyD9 and two myeloid progenitor clones, L-GM3 and L-G3, cells that differentiate in response to granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte (G)-CSF, respectively. Although LyD9 cells have differentiation potential to become macrophages, c-fms transfectants of LyD9 and L-GM3 cells did not differentiate in response to human macrophage (M)-CSF. However, c-fms transfectants of L-G3 cells differentiated to neutrophils in response to human M-CSF. These results indicate that the M-CSF receptor requires a specific signal transduction pathway to exert its differentiational and proliferative effects. Furthermore, the M-CSF receptor can convey a granulocyte-type differentiation signal possibly by cooperating with the G-CSF receptor signal transduction pathway. The c-fms-transfected LyD9 cells as well as the original LyD9 cells differentiated predominantly into GM-CSF- and G-CSF-responsive cells by coculturing with PA6 and ST2 stromal cells, respectively. The results indicate that differentiation lineage is not affected by premature expression of the M-CSF receptor. Instead, the stromal cell used for coculture apparently controls lineage- selective differentiation of the multi-potential stem cell line.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borzillo G. V., Ashmun R. A., Sherr C. J. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol Cell Biol. 1990 Jun;10(6):2703–2714. doi: 10.1128/mcb.10.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  3. Fukunaga R., Ishizaka-Ikeda E., Nagata S. Purification and characterization of the receptor for murine granulocyte colony-stimulating factor. J Biol Chem. 1990 Aug 15;265(23):14008–14015. [PubMed] [Google Scholar]
  4. Fukunaga R., Ishizaka-Ikeda E., Seto Y., Nagata S. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 1990 Apr 20;61(2):341–350. doi: 10.1016/0092-8674(90)90814-u. [DOI] [PubMed] [Google Scholar]
  5. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  6. Kato J. Y., Roussel M. F., Ashmun R. A., Sherr C. J. Transduction of human colony-stimulating factor-1 (CSF-1) receptor into interleukin-3-dependent mouse myeloid cells induces both CSF-1-dependent and factor-independent growth. Mol Cell Biol. 1989 Sep;9(9):4069–4073. doi: 10.1128/mcb.9.9.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kato J., Sherr C. J. Human colony-stimulating factor 1 (CSF-1) receptor confers CSF-1 responsiveness to interleukin-3-dependent 32DC13 mouse myeloid cells and abrogates differentiation in response to granulocyte CSF. Blood. 1990 May 1;75(9):1780–1787. [PubMed] [Google Scholar]
  8. Kinashi T., Inaba K., Tsubata T., Tashiro K., Palacios R., Honjo T. Differentiation of an interleukin 3-dependent precursor B-cell clone into immunoglobulin-producing cells in vitro. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4473–4477. doi: 10.1073/pnas.85.12.4473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinashi T., Tashiro K., Inaba K., Takeda T., Palacios R., Honjo T. An interleukin-4-dependent precursor clone is an intermediate of the differentiation pathway from an interleukin-3-dependent precursor clone into myeloid cells as well as B lymphocytes. Int Immunol. 1989;1(1):11–19. doi: 10.1093/intimm/1.1.11. [DOI] [PubMed] [Google Scholar]
  10. Kincade P. W., Lee G., Pietrangeli C. E., Hayashi S., Gimble J. M. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annu Rev Immunol. 1989;7:111–143. doi: 10.1146/annurev.iy.07.040189.000551. [DOI] [PubMed] [Google Scholar]
  11. Kodama H. A., Amagai Y., Koyama H., Kasai S. Hormonal responsiveness of a preadipose cell line derived from newborn mouse calvaria. J Cell Physiol. 1982 Jul;112(1):83–88. doi: 10.1002/jcp.1041120113. [DOI] [PubMed] [Google Scholar]
  12. Lee K. H., Kinashi T., Tohyama K., Tashiro K., Funato N., Hama K., Honjo T. Different stromal cell lines support lineage-selective differentiation of the multipotential bone marrow stem cell clone LyD9. J Exp Med. 1991 May 1;173(5):1257–1266. doi: 10.1084/jem.173.5.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMaster G. K., Carmichael G. G. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835–4838. doi: 10.1073/pnas.74.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Metcalf D., Burgess A. W. Clonal analysis of progenitor cell commitment of granulocyte or macrophage production. J Cell Physiol. 1982 Jun;111(3):275–283. doi: 10.1002/jcp.1041110308. [DOI] [PubMed] [Google Scholar]
  15. Nicola N. A. Hemopoietic cell growth factors and their receptors. Annu Rev Biochem. 1989;58:45–77. doi: 10.1146/annurev.bi.58.070189.000401. [DOI] [PubMed] [Google Scholar]
  16. Nishikawa S., Ogawa M., Nishikawa S., Kunisada T., Kodama H. B lymphopoiesis on stromal cell clone: stromal cell clones acting on different stages of B cell differentiation. Eur J Immunol. 1988 Nov;18(11):1767–1771. doi: 10.1002/eji.1830181117. [DOI] [PubMed] [Google Scholar]
  17. Palacios R., Karasuyama H., Rolink A. Ly1+ PRO-B lymphocyte clones. Phenotype, growth requirements and differentiation in vitro and in vivo. EMBO J. 1987 Dec 1;6(12):3687–3693. doi: 10.1002/j.1460-2075.1987.tb02702.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palacios R., Stuber S., Rolink A. The epigenetic influences of bone marrow and fetal liver stroma cells on the developmental potential of Ly-1+ pro-B lymphocyte clones. Eur J Immunol. 1989 Feb;19(2):347–356. doi: 10.1002/eji.1830190220. [DOI] [PubMed] [Google Scholar]
  19. Pierce J. H., Di Marco E., Cox G. W., Lombardi D., Ruggiero M., Varesio L., Wang L. M., Choudhury G. G., Sakaguchi A. Y., Di Fiore P. P. Macrophage-colony-stimulating factor (CSF-1) induces proliferation, chemotaxis, and reversible monocytic differentiation in myeloid progenitor cells transfected with the human c-fms/CSF-1 receptor cDNA. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5613–5617. doi: 10.1073/pnas.87.15.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rohrschneider L. R., Metcalf D. Induction of macrophage colony-stimulating factor-dependent growth and differentiation after introduction of the murine c-fms gene into FDC-P1 cells. Mol Cell Biol. 1989 Nov;9(11):5081–5092. doi: 10.1128/mcb.9.11.5081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roussel M. F., Dull T. J., Rettenmier C. W., Ralph P., Ullrich A., Sherr C. J. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature. 1987 Feb 5;325(6104):549–552. doi: 10.1038/325549a0. [DOI] [PubMed] [Google Scholar]
  22. Sherr C. J., Rettenmier C. W., Sacca R., Roussel M. F., Look A. T., Stanley E. R. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell. 1985 Jul;41(3):665–676. doi: 10.1016/s0092-8674(85)80047-7. [DOI] [PubMed] [Google Scholar]
  23. Shimamura M., Kobayashi Y., Yuo A., Urabe A., Okabe T., Komatsu Y., Itoh S., Takaku F. Effect of human recombinant granulocyte colony-stimulating factor on hematopoietic injury in mice induced by 5-fluorouracil. Blood. 1987 Jan;69(1):353–355. [PubMed] [Google Scholar]
  24. Takeda S., Gillis S., Palacios R. In vitro effects of recombinant interleukin 7 on growth and differentiation of bone marrow pro-B- and pro-T-lymphocyte clones and fetal thymocyte clones. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1634–1638. doi: 10.1073/pnas.86.5.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tejedor F., Ballesta J. P. Iodination of biological samples without loss of functional activity. Anal Biochem. 1982 Nov 15;127(1):143–149. doi: 10.1016/0003-2697(82)90156-7. [DOI] [PubMed] [Google Scholar]
  26. Tohyama K., Lee K. H., Tashiro K., Kinashi T., Honjo T. Establishment of an interleukin-5-dependent subclone from an interleukin-3-dependent murine hemopoietic progenitor cell line, LyD9, and its malignant transformation by autocrine secretion of interleukin-5. EMBO J. 1990 Jun;9(6):1823–1830. doi: 10.1002/j.1460-2075.1990.tb08307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  28. Whitlock C. A., Witte O. N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3608–3612. doi: 10.1073/pnas.79.11.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES