Abstract
Pluripotent hematopoietic stem cells (PHSC) are very rare cells whose functional capabilities can only be analyzed indirectly. For a better understanding and possible manipulation of mechanisms that regulate self-renewal and commitment to differentiation of PHSC, it is necessary to purify these cells and to develop assays for their growth in vitro. In the present study, a rapid and simple, widely applicable procedure to highly purify day 14 spleen colony-forming cells (day 14 CFU-S) is described. Low density bone marrow cells (rho less than or equal to 1.078 g/cm3) were enriched by two successive light-activated cell sorting procedures. In the first sort, cells within a predetermined light scatter (blast cell) window that are wheat germ agglutinin/Texas Red (WGA/TxR) positive and mAb 15-1.4.1/fluorescein isothiocyanate negative (granulocyte-monocyte marker) were selected. In the second sort, cells were selected on the basis of retention of the supravital dye rhodamine 123 (Rh123). Cells that take up little Rh123 (Rh123 dull cells) and those that take up more Rh123 (Rh123 bright cells) were 237- fold and 132-fold enriched, respectively, for day 14 CFU-S. Both Rh123 fractions were cultured for various time periods in vitro in the presence of mast cell growth factor (MGF), with or without interleukin 3 (IL-3) or IL-1 alpha. Both Rh123 fractions proliferated in response to MGF alone as determined by a [3H]TdR assay or by counting nucleated cells present in the cultures over time. MGF also acted synergistically with both IL-3 and IL-1 alpha to promote stem cell proliferation. Stimulation of both Rh123 fractions with MGF alone did not result in a net increase of day 14 CFU-S. Stimulation with MGF + IL-3 or MGF + IL- alpha resulted in a 4.4- or 2.6-fold increase of day 14 CFU-S in the Rh123 dull fraction, and an 11.6-fold or 2.6-fold increase of day 14 CFU-S in the Rh123 bright fraction, respectively. The data presented in this paper indicate that in vitro MGF acts on primitive hematopoietic stem cells by itself and also is a potent synergistic factor in combination with IL-3 or IL-1 alpha.
Full Text
The Full Text of this article is available as a PDF (828.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. M., Lyman S. D., Baird A., Wignall J. M., Eisenman J., Rauch C., March C. J., Boswell H. S., Gimpel S. D., Cosman D. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell. 1990 Oct 5;63(1):235–243. doi: 10.1016/0092-8674(90)90304-w. [DOI] [PubMed] [Google Scholar]
- Bauman J. G., Mulder A. H., van den Engh G. J. Effect of surface antigen labeling on spleen colony formation: comparison of the indirect immunofluorescence and the biotin-avidin methods. Exp Hematol. 1985 Sep;13(8):760–767. [PubMed] [Google Scholar]
- Bernstein S. E. Tissue transplantation as an analytic and therapeutic tool in hereditary anemias. Am J Surg. 1970 Apr;119(4):448–451. doi: 10.1016/0002-9610(70)90148-0. [DOI] [PubMed] [Google Scholar]
- Bertoncello I., Hodgson G. S., Bradley T. R. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp Hematol. 1985 Nov;13(10):999–1006. [PubMed] [Google Scholar]
- Copeland N. G., Gilbert D. J., Cho B. C., Donovan P. J., Jenkins N. A., Cosman D., Anderson D., Lyman S. D., Williams D. E. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell. 1990 Oct 5;63(1):175–183. doi: 10.1016/0092-8674(90)90298-s. [DOI] [PubMed] [Google Scholar]
- Fried W., Chamberlin W., Knospe W. H., Husseini S., Trobaugh F. E., Jr Studies on the defective haematopoietic microenvironment of Sl/Sl d mice. Br J Haematol. 1973 May;24(5):643–650. doi: 10.1111/j.1365-2141.1973.tb01690.x. [DOI] [PubMed] [Google Scholar]
- Hodgson G. S., Bradley T. R. Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature. 1979 Oct 4;281(5730):381–382. doi: 10.1038/281381a0. [DOI] [PubMed] [Google Scholar]
- Huang E., Nocka K., Beier D. R., Chu T. Y., Buck J., Lahm H. W., Wellner D., Leder P., Besmer P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990 Oct 5;63(1):225–233. doi: 10.1016/0092-8674(90)90303-v. [DOI] [PubMed] [Google Scholar]
- Jones R. J., Wagner J. E., Celano P., Zicha M. S., Sharkis S. J. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature. 1990 Sep 13;347(6289):188–189. doi: 10.1038/347188a0. [DOI] [PubMed] [Google Scholar]
- Kelvin D. J., Chance S., Shreeve M., Axelrad A. A., Connolly J. A., McLeod D. Interleukin 3 and cell cycle progression. J Cell Physiol. 1986 Jun;127(3):403–409. doi: 10.1002/jcp.1041270308. [DOI] [PubMed] [Google Scholar]
- Lahiri S. K., Keizer H. J., van Putten L. M. The efficiency of the assay for haemopoietic colony forming cells. Cell Tissue Kinet. 1970 Oct;3(4):355–362. doi: 10.1111/j.1365-2184.1970.tb00343.x. [DOI] [PubMed] [Google Scholar]
- Magli M. C., Iscove N. N., Odartchenko N. Transient nature of early haematopoietic spleen colonies. Nature. 1982 Feb 11;295(5849):527–529. doi: 10.1038/295527a0. [DOI] [PubMed] [Google Scholar]
- Migliaccio A. R., Visser J. W. Proliferation of purified murine hemopoietic stem cells in serum-free cultures stimulated with purified stem-cell-activating factor. Exp Hematol. 1986 Dec;14(11):1043–1048. [PubMed] [Google Scholar]
- Mochizuki D. Y., Eisenman J. R., Conlon P. J., Larsen A. D., Tushinski R. J. Interleukin 1 regulates hematopoietic activity, a role previously ascribed to hemopoietin 1. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5267–5271. doi: 10.1073/pnas.84.15.5267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore M. A., Warren D. J. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7134–7138. doi: 10.1073/pnas.84.20.7134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder A. H., Visser J. W., van den Engh G. J. Thymus regeneration by bone marrow cell suspensions differing in the potential to form early and late spleen colonies. Exp Hematol. 1985 Sep;13(8):768–775. [PubMed] [Google Scholar]
- Muller-Sieburg C. E., Whitlock C. A., Weissman I. L. Isolation of two early B lymphocyte progenitors from mouse marrow: a committed pre-pre-B cell and a clonogenic Thy-1-lo hematopoietic stem cell. Cell. 1986 Feb 28;44(4):653–662. doi: 10.1016/0092-8674(86)90274-6. [DOI] [PubMed] [Google Scholar]
- Ploemacher R. E., Brons R. H. Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp Hematol. 1989 Mar;17(3):263–266. [PubMed] [Google Scholar]
- Russell E. S., Bernstein S. E. Proof of whole-cell implant in therapy of W-series anemia. Arch Biochem Biophys. 1968 May;125(2):594–597. doi: 10.1016/0003-9861(68)90617-6. [DOI] [PubMed] [Google Scholar]
- Russell E. S. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459. [PubMed] [Google Scholar]
- Spangrude G. J., Scollay R. A simplified method for enrichment of mouse hematopoietic stem cells. Exp Hematol. 1990 Sep;18(8):920–926. [PubMed] [Google Scholar]
- Stanley E. R., Bartocci A., Patinkin D., Rosendaal M., Bradley T. R. Regulation of very primitive, multipotent, hemopoietic cells by hemopoietin-1. Cell. 1986 Jun 6;45(5):667–674. doi: 10.1016/0092-8674(86)90781-6. [DOI] [PubMed] [Google Scholar]
- Suda T., Suda J., Ogawa M., Ihle J. N. Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J Cell Physiol. 1985 Aug;124(2):182–190. doi: 10.1002/jcp.1041240203. [DOI] [PubMed] [Google Scholar]
- Szilvassy S. J., Lansdorp P. M., Humphries R. K., Eaves A. C., Eaves C. J. Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood. 1989 Aug 15;74(3):930–939. [PubMed] [Google Scholar]
- TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
- Visser J. W., Bauman J. G., Mulder A. H., Eliason J. F., de Leeuw A. M. Isolation of murine pluripotent hemopoietic stem cells. J Exp Med. 1984 Jun 1;159(6):1576–1590. doi: 10.1084/jem.159.6.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser J. W., De Vries P. Identification and purification of murine hematopoietic stem cells by flow cytometry. Methods Cell Biol. 1990;33:451–468. [PubMed] [Google Scholar]
- Visser J. W., de Vries P. Isolation of spleen-colony forming cells (CFU-s) using wheat germ agglutinin and rhodamine 123 labeling. Blood Cells. 1988;14(2-3):369–384. [PubMed] [Google Scholar]
- Williams D. E., Eisenman J., Baird A., Rauch C., Van Ness K., March C. J., Park L. S., Martin U., Mochizuki D. Y., Boswell H. S. Identification of a ligand for the c-kit proto-oncogene. Cell. 1990 Oct 5;63(1):167–174. doi: 10.1016/0092-8674(90)90297-r. [DOI] [PubMed] [Google Scholar]
- Wolf N. S., Priestley G. V. Kinetics of early and late spleen colony development. Exp Hematol. 1986 Aug;14(7):676–682. [PubMed] [Google Scholar]
- Zsebo K. M., Wypych J., McNiece I. K., Lu H. S., Smith K. A., Karkare S. B., Sachdev R. K., Yuschenkoff V. N., Birkett N. C., Williams L. R. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver--conditioned medium. Cell. 1990 Oct 5;63(1):195–201. doi: 10.1016/0092-8674(90)90300-4. [DOI] [PubMed] [Google Scholar]