Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 May 1;173(5):1227–1234. doi: 10.1084/jem.173.5.1227

Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity

PMCID: PMC2118857  PMID: 1827141

Abstract

Macrophage stimulating protein (MSP) was purified to homogeneity from human blood plasma by selection of biologically active fractions obtained by sequential immunoaffinity and high pressure liquid ion exchange chromatography. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the molecular mass of MSP was 70 kilodaltons (kD); under reducing conditions two gel bands were seen, at 47 and 22 kD. The disulfide-linked two-chain structure of MSP was confirmed by separation of reduced and alkylated MSP chains. A computer search comparison of six partial sequences of MSP digests showed that MSP has not been recorded in data banks of protein sequences. Two MSP fragments had greater than 80% identity in overlaps of 12-16 residues to sequences in the protein family that includes human prothrombin, plasminogen, and hepatocyte growth factor. The concentration of purified MSP required for half-maximal biological activity was the order of 10(-10) M. In addition to making mouse resident peritoneal macrophages responses to chemoattractants, MSP caused the appearance of long cytoplasmic processes and pinocytic vesicles in freshly plated macrophages. MSP also caused phagocytosis via the C3b receptor, CR1. Whereas resident peritoneal macrophages bind but do not ingest sheep erythrocytes opsonized with IgM anti-Forssman antibody and mouse C3b, addition of MSP caused ingestion. Thus, MSP causes direct or indirect activation of two receptors of the mouse resident peritoneal macrophage, CR1 and the C5a receptor.

Full Text

The Full Text of this article is available as a PDF (752.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender J. G., McPhail L. C., Van Epps D. E. Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme. J Immunol. 1983 May;130(5):2316–2323. [PubMed] [Google Scholar]
  2. Bianco C., Griffin F. M., Jr, Silverstein S. C. Studies of the macrophage complement receptor. Alteration of receptor function upon macrophage activation. J Exp Med. 1975 Jun 1;141(6):1278–1290. doi: 10.1084/jem.141.6.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bohnsack J. F., Kleinman H. K., Takahashi T., O'Shea J. J., Brown E. J. Connective tissue proteins and phagocytic cell function. Laminin enhances complement and Fc-mediated phagocytosis by cultured human macrophages. J Exp Med. 1985 May 1;161(5):912–923. doi: 10.1084/jem.161.5.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Changelian P. S., Fearon D. T. Tissue-specific phosphorylation of complement receptors CR1 and CR2. J Exp Med. 1986 Jan 1;163(1):101–115. doi: 10.1084/jem.163.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Griffin F. M., Jr, Mullinax P. J. In vivo activation of macrophage C3 receptors for phagocytosis. J Exp Med. 1985 Jul 1;162(1):352–357. doi: 10.1084/jem.162.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffin J. A., Griffin F. M., Jr Augmentation of macrophage complement receptor function in vitro. I. Characterization of the cellular interactions required for the generation of a T-lymphocyte product that enhances macrophage complement receptor function. J Exp Med. 1979 Sep 19;150(3):653–675. doi: 10.1084/jem.150.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harvath L., Falk W., Leonard E. J. Rapid quantitation of neutrophil chemotaxis: use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Methods. 1980;37(1):39–45. doi: 10.1016/0022-1759(80)90179-9. [DOI] [PubMed] [Google Scholar]
  9. Köhler G., Howe S. C., Milstein C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J Immunol. 1976 Apr;6(4):292–295. doi: 10.1002/eji.1830060411. [DOI] [PubMed] [Google Scholar]
  10. Leonard E. J., Skeel A. H. Isolation of macrophage stimulating protein (MSP) from human serum. Exp Cell Res. 1978 Jun;114(1):117–126. doi: 10.1016/0014-4827(78)90043-5. [DOI] [PubMed] [Google Scholar]
  11. Leonard E. J., Skeel A. A serum protein that stimulates macrophage movement, chemotaxis and spreading. Exp Cell Res. 1976 Oct 15;102(2):434–438. doi: 10.1016/0014-4827(76)90065-3. [DOI] [PubMed] [Google Scholar]
  12. Leonard E. J., Skeel A. Disposable microliter immunoabsorbent columns: construction and operation. J Immunol Methods. 1985 Oct 10;82(2):341–348. doi: 10.1016/0022-1759(85)90366-7. [DOI] [PubMed] [Google Scholar]
  13. Leonard E. J., Skeel A. Effects of cell concentration on chemotactic responsiveness of mouse resident peritoneal macrophages. J Reticuloendothel Soc. 1981 Oct;30(4):271–282. [PubMed] [Google Scholar]
  14. Leonard E. J., Skeel A. Functional differences between resident and exudate peritoneal mouse macrophages: specific serum protein requirements for responsiveness to chemotaxins. J Reticuloendothel Soc. 1980 Nov;28(5):437–447. [PubMed] [Google Scholar]
  15. Meltzer M. S., Occhionero M., Ruco L. P. Macrophage activation for tumor cytotoxicity: regulatory mechanisms for induction and control of cytotoxic activity. Fed Proc. 1982 Apr;41(6):2198–2205. [PubMed] [Google Scholar]
  16. Moon D. K., Geczy C. L. Recombinant IFN-gamma synergizes with lipopolysaccharide to induce macrophage membrane procoagulants. J Immunol. 1988 Sep 1;141(5):1536–1542. [PubMed] [Google Scholar]
  17. Nakamura T., Nishizawa T., Hagiya M., Seki T., Shimonishi M., Sugimura A., Tashiro K., Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989 Nov 23;342(6248):440–443. doi: 10.1038/342440a0. [DOI] [PubMed] [Google Scholar]
  18. Park C. H., Tulinsky A. Three-dimensional structure of the kringle sequence: structure of prothrombin fragment 1. Biochemistry. 1986 Jul 15;25(14):3977–3982. doi: 10.1021/bi00362a001. [DOI] [PubMed] [Google Scholar]
  19. Showalter S. D., Zweig M., Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981 Dec;34(3):684–692. doi: 10.1128/iai.34.3.684-692.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stevenson M. M., Meltzer M. S. Depressed chemotactic responses in vitro of peritoneal macrophages from tumor-bearing mice. J Natl Cancer Inst. 1976 Oct;57(4):847–852. doi: 10.1093/jnci/57.4.847. [DOI] [PubMed] [Google Scholar]
  21. Wiman B., Collen D. On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem. 1978 Mar 15;84(2):573–578. doi: 10.1111/j.1432-1033.1978.tb12200.x. [DOI] [PubMed] [Google Scholar]
  22. Wright S. D., Craigmyle L. S., Silverstein S. C. Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. J Exp Med. 1983 Oct 1;158(4):1338–1343. doi: 10.1084/jem.158.4.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wright S. D., Licht M. R., Craigmyle L. S., Silverstein S. C. Communication between receptors for different ligands on a single cell: ligation of fibronectin receptors induces a reversible alteration in the function of complement receptors on cultured human monocytes. J Cell Biol. 1984 Jul;99(1 Pt 1):336–339. doi: 10.1083/jcb.99.1.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wright S. D., Silverstein S. C. Tumor-promoting phorbol esters stimulate C3b and C3b' receptor-mediated phagocytosis in cultured human monocytes. J Exp Med. 1982 Oct 1;156(4):1149–1164. doi: 10.1084/jem.156.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES