Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Jul 1;174(1):7–14. doi: 10.1084/jem.174.1.7

Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells

PMCID: PMC2118882  PMID: 1711569

Abstract

The effect of nerve growth factor (NGF) on proliferation/differentiation of mast cells was investigated in vitro. Although NGF alone neither supported colony formation of bone marrow- derived cultured mast cells (BMCMC) nor induced development of mast cell colonies from nonadherent bone marrow cells (NBMC), addition of NGF to the suboptimal dose of interleukin 3 (IL-3) significantly increased the numbers of mast cell colonies produced by BMCMC or NBMC in methylcellulose. When stimulated by IL-3 alone, cells in mast cell colonies were not stained by berberine sulfate, a fluorescent dye. In contrast, mast cells developing in methylcellulose cultures obtaining both IL-3 and NGF were stained by berberine sulfate. The fluorescence was abolished by the treatment of heparinase but not of chondroitinase ABC, suggesting that mast cells stimulated by IL-3 and NGF produced and stored heparin proteoglycan. The histamine content of BMCMC maintained by IL-3 was also increased by addition of NGF. Since BMCMC showed mucosal mast cell-like phenotype, NGF appeared to induce the phenotypic change to connective tissue-type mast cells (CTMC). In the culture containing BMCMC, 3T3 fibroblasts, and IL-3, the phenotypic change of BMCMC to CTMC was observed as well. Since NGF was detected in this coculture and since addition of anti-NGF monoclonal antibody suppressed the phenotypic change, NGF produced by fibroblasts appeared to induce the phenotypic change. Neither BMCMC alone nor IL-3 alone increased the concentration of NGF. Therefore, there is a possibility that BMCMC stimulated by IL-3 may induce the production and/or release of NGF by fibroblasts.

Full Text

The Full Text of this article is available as a PDF (740.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloe L., Levi-Montalcini R. Mast cells increase in tissues of neonatal rats injected with the nerve growth factor. Brain Res. 1977 Sep 16;133(2):358–366. doi: 10.1016/0006-8993(77)90772-7. [DOI] [PubMed] [Google Scholar]
  2. Bienenstock J., Befus A. D., Pearce F., Denburg J., Goodacre R. Mast cell heterogeneity: derivation and function, with emphasis on the intestine. J Allergy Clin Immunol. 1982 Dec;70(6):407–412. doi: 10.1016/0091-6749(82)90001-x. [DOI] [PubMed] [Google Scholar]
  3. Dimlich R. V., Meineke H. A., Reilly F. D., McCuskey R. S. The fluorescent staining of heparin in mast cells using berberine sulfate: compatibility with paraformaldehyde or o-phthalaldehyde induced fluorescence and metachromasia. Stain Technol. 1980 Jul;55(4):217–223. doi: 10.3109/10520298009067243. [DOI] [PubMed] [Google Scholar]
  4. Enerbäck L. Berberine sulphate binding to mast cell polyanions: a cytofluorometric method for the quantitation of heparin. Histochemistry. 1974;42(4):301–313. doi: 10.1007/BF00492678. [DOI] [PubMed] [Google Scholar]
  5. Fujita J., Nakayama H., Onoue H., Kanakura Y., Nakano T., Asai H., Takeda S., Honjo T., Kitamura Y. Fibroblast-dependent growth of mouse mast cells in vitro: duplication of mast cell depletion in mutant mice of W/Wv genotype. J Cell Physiol. 1988 Jan;134(1):78–84. doi: 10.1002/jcp.1041340109. [DOI] [PubMed] [Google Scholar]
  6. Galli S. J., Dvorak A. M., Dvorak H. F. Basophils and mast cells: morphologic insights into their biology, secretory patterns, and function. Prog Allergy. 1984;34:1–141. [PubMed] [Google Scholar]
  7. Gudat F., Laubscher A., Otten U., Pletscher A. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits. Br J Pharmacol. 1981 Nov;74(3):533–538. doi: 10.1111/j.1476-5381.1981.tb10461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamaguchi Y., Kanakura Y., Fujita J., Takeda S., Nakano T., Tarui S., Honjo T., Kitamura Y. Interleukin 4 as an essential factor for in vitro clonal growth of murine connective tissue-type mast cells. J Exp Med. 1987 Jan 1;165(1):268–273. doi: 10.1084/jem.165.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hültner L., Druez C., Moeller J., Uyttenhove C., Schmitt E., Rüde E., Dörmer P., Van Snick J. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol. 1990 Jun;20(6):1413–1416. doi: 10.1002/eji.1830200632. [DOI] [PubMed] [Google Scholar]
  10. Ihle J. N., Keller J., Henderson L., Klein F., Palaszynski E. Procedures for the purification of interleukin 3 to homogeneity. J Immunol. 1982 Dec;129(6):2431–2436. [PubMed] [Google Scholar]
  11. Kannan Y., Ushio H., Koyama H., Okada M., Oikawa M., Yoshihara T., Kaneko M., Matsuda H. 2.5S nerve growth factor enhances survival, phagocytosis, and superoxide production of murine neutrophils. Blood. 1991 Mar 15;77(6):1320–1325. [PubMed] [Google Scholar]
  12. Kitamura Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol. 1989;7:59–76. doi: 10.1146/annurev.iy.07.040189.000423. [DOI] [PubMed] [Google Scholar]
  13. LEVI-MONTALCINI R., ANGELETTI P. U. Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev Biol. 1963 Mar;6:653–659. doi: 10.1016/0012-1606(63)90149-0. [DOI] [PubMed] [Google Scholar]
  14. Levi-Schaffer F., Austen K. F., Gravallese P. M., Stevens R. L. Coculture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6485–6488. doi: 10.1073/pnas.83.17.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levi-Schaffer F., Kupietzky A. Mast cells enhance migration and proliferation of fibroblasts into an in vitro wound. Exp Cell Res. 1990 May;188(1):42–49. doi: 10.1016/0014-4827(90)90275-f. [DOI] [PubMed] [Google Scholar]
  16. Li A. K., Koroly M. J., Schattenkerk M. E., Malt R. A., Young M. Nerve growth factor: acceleration of the rate of wound healing in mice. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4379–4381. doi: 10.1073/pnas.77.7.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manning P. T., Russell J. H., Simmons B., Johnson E. M., Jr Protection from guanethidine-induced neuronal destruction by nerve growth factor: effect of NGF on immune function. Brain Res. 1985 Aug 5;340(1):61–69. doi: 10.1016/0006-8993(85)90773-5. [DOI] [PubMed] [Google Scholar]
  18. Matsuda H., Coughlin M. D., Bienenstock J., Denburg J. A. Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6508–6512. doi: 10.1073/pnas.85.17.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsuda H., Kawakita K., Kiso Y., Nakano T., Kitamura Y. Substance P induces granulocyte infiltration through degranulation of mast cells. J Immunol. 1989 Feb 1;142(3):927–931. [PubMed] [Google Scholar]
  20. Matsuda H., Switzer J., Coughlin M. D., Bienenstock J., Denburg J. A. Human basophilic cell differentiation promoted by 2.5S nerve growth factor. Int Arch Allergy Appl Immunol. 1988;86(4):453–457. doi: 10.1159/000234634. [DOI] [PubMed] [Google Scholar]
  21. Nakahata T., Spicer S. S., Cantey J. R., Ogawa M. Clonal assay of mouse mast cell colonies in methylcellulose culture. Blood. 1982 Aug;60(2):352–361. [PubMed] [Google Scholar]
  22. Nakano T., Sonoda T., Hayashi C., Yamatodani A., Kanayama Y., Yamamura T., Asai H., Yonezawa T., Kitamura Y., Galli S. J. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med. 1985 Sep 1;162(3):1025–1043. doi: 10.1084/jem.162.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Otten U., Ehrhard P., Peck R. Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10059–10063. doi: 10.1073/pnas.86.24.10059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Razin E., Stevens R. L., Akiyama F., Schmid K., Austen K. F. Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate. J Biol Chem. 1982 Jun 25;257(12):7229–7236. [PubMed] [Google Scholar]
  25. SHORE P. A., BURKHALTER A., COHN V. H., Jr A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959 Nov;127:182–186. [PubMed] [Google Scholar]
  26. Seiler M., Schwab M. E. Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 1984 May 21;300(1):33–39. doi: 10.1016/0006-8993(84)91338-6. [DOI] [PubMed] [Google Scholar]
  27. Smith C. A., Rennick D. M. Characterization of a murine lymphokine distinct from interleukin 2 and interleukin 3 (IL-3) possessing a T-cell growth factor activity and a mast-cell growth factor activity that synergizes with IL-3. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1857–1861. doi: 10.1073/pnas.83.6.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thoenen H., Edgar D. Neurotrophic factors. Science. 1985 Jul 19;229(4710):238–242. doi: 10.1126/science.2409599. [DOI] [PubMed] [Google Scholar]
  29. Young M., Oger J., Blanchard M. H., Asdourian H., Amos H., Arnason B. G. Secretion of a nerve growth factor by primary chick fibroblast cultures. Science. 1975 Jan 31;187(4174):361–362. doi: 10.1126/science.1167427. [DOI] [PubMed] [Google Scholar]
  30. Yurt R. W., Leid R. W., Jr, Austen K. F. Native heparin from rat peritoneal mast cells. J Biol Chem. 1977 Jan 25;252(2):518–521. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES