Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Aug 1;174(2):467–478. doi: 10.1084/jem.174.2.467

Cross-species bone marrow transplantation: evidence for tolerance induction, stem cell engraftment, and maturation of T lymphocytes in a xenogeneic stromal environment (rat----mouse)

PMCID: PMC2118904  PMID: 1856629

Abstract

Transplantation of untreated F344 rat bone marrow into irradiated B10 mouse recipients (non-TCD F344----B10) to produce fully xenogeneic chimeras resulted in stable xenogeneic lymphoid chimerism, ranging from 82% to 97% rat. Survival of animals was excellent, without evidence for GVH disease. The specificity of tolerance which resulted was highly donor-specific; MHC disparate third party mouse and rat skin grafts were promptly rejected while donor-specific F344 grafts were significantly prolonged (MST greater than 130 days). Multi-lineage rat stem cell-derived progeny including lymphoid cells (T- and B- lymphocytes), myeloid cells, erythrocytes, platelets, and natural killer (NK) cells were present in the fully xenogenic chimeras up to 7 months after bone marrow transplantation. Immature rat T-lymphocytes matured and acquired the alpha/beta T-cell receptor in the thymus of chimeras in a pattern similar to normal rat controls, suggesting that immature T-lymphocytes of rat origin could interact with the murine xenogeneic thymic stroma to undergo normal maturation and differentiation. This model may be useful to study the mechanisms responsible for the induction and maintenance of donor-specific transplantation tolerance across a species barrier.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
  2. BROCADES ZAALBERG A., VOS O., BEKKUM VAN D. W. Surviving rat skin grafts in mice. Nature. 1957 Aug 3;180(4579):238–239. doi: 10.1038/180238b0. [DOI] [PubMed] [Google Scholar]
  3. Bradley S. M., Kruisbeek A. M., Singer A. Cytotoxic T lymphocyte responses in allogeneic radiation bone marrow chimeras. The chimeric host strictly dictates the self-repertoire of Ia-restricted T cells but not H-2K/D-restricted T cells. J Exp Med. 1982 Dec 1;156(6):1650–1664. doi: 10.1084/jem.156.6.1650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brideau R. J., Carter P. B., McMaster W. R., Mason D. W., Williams A. F. Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol. 1980 Aug;10(8):609–615. doi: 10.1002/eji.1830100807. [DOI] [PubMed] [Google Scholar]
  5. CONGDON C. C., LORENZ E. Humoral factor in irradiation protection: modification of lethal irradiation injury in mice by injection of rat bone marrow. Am J Physiol. 1954 Feb;176(2):297–300. doi: 10.1152/ajplegacy.1954.176.2.297. [DOI] [PubMed] [Google Scholar]
  6. Campbell D. G., Williams A. F., Bayley P. M., Reid K. B. Structural similarities between Thy-1 antigen from rat brain and immunoglobulin. Nature. 1979 Nov 15;282(5736):341–342. doi: 10.1038/282341a0. [DOI] [PubMed] [Google Scholar]
  7. Clark S. J., Law D. A., Paterson D. J., Puklavec M., Williams A. F. Activation of rat T lymphocytes by anti-CD2 monoclonal antibodies. J Exp Med. 1988 Jun 1;167(6):1861–1872. doi: 10.1084/jem.167.6.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eppig J. J., Kozak L. P., Eicher E. M., Stevens L. C. Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature. 1977 Oct 6;269(5628):517–518. doi: 10.1038/269517a0. [DOI] [PubMed] [Google Scholar]
  9. Eppig J. J., Kozak L. P., Eicher E. M., Stevens L. C. Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature. 1977 Oct 6;269(5628):517–518. doi: 10.1038/269517a0. [DOI] [PubMed] [Google Scholar]
  10. FORD C. E., HAMERTON J. L., BARNES D. W., LOUTIT J. F. Cytological identification of radiation-chimaeras. Nature. 1956 Mar 10;177(4506):452–454. doi: 10.1038/177452a0. [DOI] [PubMed] [Google Scholar]
  11. Fowlkes B. J., Edison L., Mathieson B. J., Chused T. M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J Exp Med. 1985 Sep 1;162(3):802–822. doi: 10.1084/jem.162.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gambel P., Francescutti L. H., Wegmann T. G. Antibody-facilitated chimeras. Stem cell allotransplantation using antihost major histocompatibility complex monoclonal antibodies instead of lethal irradiation for host conditioning. Transplantation. 1984 Aug;38(2):152–158. [PubMed] [Google Scholar]
  13. Gehan E. A. Estimating survival functions from the life table. J Chronic Dis. 1969 Feb;21(9):629–644. doi: 10.1016/0021-9681(69)90035-6. [DOI] [PubMed] [Google Scholar]
  14. Goldschneider I., Gordon L. K., Morris R. J. Demonstration of Thy-1 antigen on pluripotent hemopoietic stem cells in the rat. J Exp Med. 1978 Nov 1;148(5):1351–1366. doi: 10.1084/jem.148.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Golub E. S. Brain-associated theta antigen: reactivity of rabbit anti-mouse brain with mouse lymphoid cells. Cell Immunol. 1971 Aug;2(4):353–361. doi: 10.1016/0008-8749(71)90070-0. [DOI] [PubMed] [Google Scholar]
  16. Ildstad S. T., Sachs D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984 Jan 12;307(5947):168–170. doi: 10.1038/307168a0. [DOI] [PubMed] [Google Scholar]
  17. Kunz H. W., Cortese Hassett A. L., Inomata T., Misra D. N., Gill T. J., 3rd The RT1.G locus in the rat encodes a Qa/TL-like antigen. Immunogenetics. 1989;30(3):181–187. doi: 10.1007/BF02421204. [DOI] [PubMed] [Google Scholar]
  18. Mayumi H., Himeno K., Tanaka K., Tokuda N., Fan J. L., Nomoto K. Drug-induced tolerance to allografts in mice. IX. Establishment of complete chimerism by allogeneic spleen cell transplantation from donors made tolerant to H-2-identical recipients. Transplantation. 1986 Oct;42(4):417–422. [PubMed] [Google Scholar]
  19. NOWELL P. C., COLE L. J., HABERMEYER J. G., ROAN P. L. Growth and continued function of rat marrow cells in x-radiated mice. Cancer Res. 1956 Mar;16(3):258–261. [PubMed] [Google Scholar]
  20. Pierson R. N., 3rd, Winn H. J., Russell P. S., Auchincloss H., Jr Xenogeneic skin graft rejection is especially dependent on CD4+ T cells. J Exp Med. 1989 Sep 1;170(3):991–996. doi: 10.1084/jem.170.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Qin S. X., Cobbold S., Benjamin R., Waldmann H. Induction of classical transplantation tolerance in the adult. J Exp Med. 1989 Mar 1;169(3):779–794. doi: 10.1084/jem.169.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rayfield L. S., Brent L. Tolerance, immunocompetence, and secondary disease in fully allogeneic radiation chimeras. Transplantation. 1983 Aug;36(2):183–189. doi: 10.1097/00007890-198308000-00015. [DOI] [PubMed] [Google Scholar]
  23. Roncarolo M. G., Yssel H., Touraine J. L., Bacchetta R., Gebuhrer L., De Vries J. E., Spits H. Antigen recognition by MHC-incompatible cells of a human mismatched chimera. J Exp Med. 1988 Dec 1;168(6):2139–2152. doi: 10.1084/jem.168.6.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sharabi Y., Sachs D. H. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med. 1989 Feb 1;169(2):493–502. doi: 10.1084/jem.169.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Singer A., Hathcock K. S., Hodes R. J. Self recognition in allogeneic radiation bone marrow chimeras. A radiation-resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells. J Exp Med. 1981 May 1;153(5):1286–1301. doi: 10.1084/jem.153.5.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Slavin S., Strober S., Fuks Z., Kaplan H. S. Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts. J Exp Med. 1977 Jul 1;146(1):34–48. doi: 10.1084/jem.146.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steinmuller D., Lofgreen J. S. Differential survival of skin and heart allografts in radiation chimaeras provides further evidence for Sk histocompatibility antigen. Nature. 1974 Apr 26;248(5451):796–797. doi: 10.1038/248796a0. [DOI] [PubMed] [Google Scholar]
  28. Tanaka T., Masuko T., Yagita H., Tamura T., Hashimoto Y. Characterization of a CD3-like rat T cell surface antigen recognized by a monoclonal antibody. J Immunol. 1989 Apr 15;142(8):2791–2795. [PubMed] [Google Scholar]
  29. Vallera D. A., Blazar B. R. T cell depletion for graft-versus-host-disease prophylaxis. A perspective on engraftment in mice and humans. Transplantation. 1989 May;47(5):751–760. doi: 10.1097/00007890-198905000-00001. [DOI] [PubMed] [Google Scholar]
  30. Wood M. L., Monaco A. P., Gozzo J. J., Liegeois A. Use of homozygous allogeneic bone marrow for induction of tolerance with antilymphocyte serum: dose and timing. Transplant Proc. 1971 Mar;3(1):676–679. [PubMed] [Google Scholar]
  31. Zinkernagel R. M., Althage A., Callahan G., Welsh R. M., Jr On the immunocompetence of H-2 incompatible irradiation bone marrow chimeras. J Immunol. 1980 May;124(5):2356–2365. [PubMed] [Google Scholar]
  32. van den Brink M. R., Hunt L. E., Hiserodt J. C. In vivo treatment with monoclonal antibody 3.2.3 selectively eliminates natural killer cells in rats. J Exp Med. 1990 Jan 1;171(1):197–210. doi: 10.1084/jem.171.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES