Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Sep 1;174(3):515–524. doi: 10.1084/jem.174.3.515

Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macrophage receptor for glucose-modified proteins

PMCID: PMC2118929  PMID: 1651976

Abstract

Advanced glycosylation endproducts (AGEs), the glucose-derived adducts that form nonenzymatically and accumulate on tissue proteins, are implicated in many chronic complications associated with diabetes and aging. We have previously described a monocyte/macrophage surface receptor system thought to coordinate AGE protein removal and tissue remodeling, and purified a corresponding 90-kD AGE-binding protein from the murine RAW 264.7 cell line. To identify AGE-binding proteins in normal animals, the tissue distribution of 125I-AGE rat serum albumin taken up from the blood was determined in rats in vivo. These uptake studies demonstrated that the liver was a major site of AGE protein sequestration. Using a solid-phase assay system involving the immobilization of solubilized membrane proteins onto nitrocellulose to monitor binding activity, and several purification steps including affinity chromatography over an AGE bovine serum albumin matrix, two rat liver membrane proteins were isolated that specifically bound AGEs, one migrating at 60 kD (p60) and the other at 90 kD (p90) on SDS-PAGE. NH2-terminal sequence analysis revealed no significant homology between these two proteins nor to any molecules available in sequence databases. Flow cytometric analyses using avian antibodies to purified rat p60 and p90 demonstrated that both proteins are present on rat monocytes and macrophages. Competition studies revealed no crossreactivity between the two antisera; anti-p60 and anti-p90 antisera prevented AGE-protein binding to rat macrophages when added alone or in combination. These results indicate that rat liver contains at least two novel and distinct proteins that recognize AGE-modified macromolecules, although p90 may be related to the previously described 90-kD AGE receptor isolated from RAW 264.7 cells. The constitutive expression of AGE-binding proteins on rat monocytes and macrophages, and the sequestration of circulating AGE-modified proteins by the liver, provides further evidence in support of a role for these molecules in the normal removal of proteins marked as senescent by accumulated glucose-derived covalent addition products, or AGEs.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brownlee M., Vlassara H., Kooney A., Ulrich P., Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science. 1986 Jun 27;232(4758):1629–1632. doi: 10.1126/science.3487117. [DOI] [PubMed] [Google Scholar]
  4. Daniel T. O., Schneider W. J., Goldstein J. L., Brown M. S. Visualization of lipoprotein receptors by ligand blotting. J Biol Chem. 1983 Apr 10;258(7):4606–4611. [PubMed] [Google Scholar]
  5. Esposito C., Gerlach H., Brett J., Stern D., Vlassara H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med. 1989 Oct 1;170(4):1387–1407. doi: 10.1084/jem.170.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  7. Harrington M. G. Elution of protein from gels. Methods Enzymol. 1990;182:488–495. doi: 10.1016/0076-6879(90)82039-5. [DOI] [PubMed] [Google Scholar]
  8. Horiuchi S., Murakami M., Takata K., Morino Y. Scavenger receptor for aldehyde-modified proteins. J Biol Chem. 1986 Apr 15;261(11):4962–4966. [PubMed] [Google Scholar]
  9. Horiuchi S., Takata K., Morino Y. Characterization of a membrane-associated receptor from rat sinusoidal liver cells that binds formaldehyde-treated serum albumin. J Biol Chem. 1985 Jan 10;260(1):475–481. [PubMed] [Google Scholar]
  10. Kilzer P., Chang K., Marvel J., Kilo C., Williamson J. R. Tissue differences in vascular permeability changes induced by histamine. Microvasc Res. 1985 Nov;30(3):270–285. doi: 10.1016/0026-2862(85)90059-7. [DOI] [PubMed] [Google Scholar]
  11. Kilzer P., Chang K., Marvel J., Rowold E., Jaudes P., Ullensvang S., Kilo C., Williamson J. R. Albumin permeation of new vessels is increased in diabetic rats. Diabetes. 1985 Apr;34(4):333–336. doi: 10.2337/diab.34.4.333. [DOI] [PubMed] [Google Scholar]
  12. Kirstein M., Brett J., Radoff S., Ogawa S., Stern D., Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9010–9014. doi: 10.1073/pnas.87.22.9010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kodama T., Reddy P., Kishimoto C., Krieger M. Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9238–9242. doi: 10.1073/pnas.85.23.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Monnier V. M., Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981 Jan 30;211(4481):491–493. doi: 10.1126/science.6779377. [DOI] [PubMed] [Google Scholar]
  15. Polson A., von Wechmar M. B., van Regenmortel M. H. Isolation of viral IgY antibodies from yolks of immunized hens. Immunol Commun. 1980;9(5):475–493. doi: 10.3109/08820138009066010. [DOI] [PubMed] [Google Scholar]
  16. Pongor S., Ulrich P. C., Bencsath F. A., Cerami A. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci U S A. 1984 May;81(9):2684–2688. doi: 10.1073/pnas.81.9.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Radoff S., Cerami A., Vlassara H. Isolation of surface binding protein specific for advanced glycosylation end products from mouse macrophage-derived cell line RAW 264.7. Diabetes. 1990 Dec;39(12):1510–1518. doi: 10.2337/diab.39.12.1510. [DOI] [PubMed] [Google Scholar]
  18. Radoff S., Vlassara H., Cerami A. Characterization of a solubilized cell surface binding protein on macrophages specific for proteins modified nonenzymatically by advanced glycosylated end products. Arch Biochem Biophys. 1988 Jun;263(2):418–423. doi: 10.1016/0003-9861(88)90654-6. [DOI] [PubMed] [Google Scholar]
  19. Thom D., Powell A. J., Lloyd C. W., Rees D. A. Rapid isolation of plasma membranes in high yield from cultured fibroblasts. Biochem J. 1977 Nov 15;168(2):187–194. doi: 10.1042/bj1680187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Urdal D. L., Call S. M., Jackson J. L., Dower S. K. Affinity purification and chemical analysis of the interleukin-1 receptor. J Biol Chem. 1988 Feb 25;263(6):2870–2877. [PubMed] [Google Scholar]
  21. Vlassara H., Brownlee M., Cerami A. Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts. J Exp Med. 1984 Jul 1;160(1):197–207. doi: 10.1084/jem.160.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vlassara H., Brownlee M., Manogue K. R., Dinarello C. A., Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science. 1988 Jun 10;240(4858):1546–1548. doi: 10.1126/science.3259727. [DOI] [PubMed] [Google Scholar]
  23. Williamson J. R., Chang K., Tilton R. G., Prater C., Jeffrey J. R., Weigel C., Sherman W. R., Eades D. M., Kilo C. Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozocin-induced diabetes. Prevention by aldose reductase inhibitors and castration. Diabetes. 1987 Jul;36(7):813–821. doi: 10.2337/diab.36.7.813. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES