Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Sep 1;174(3):705–715. doi: 10.1084/jem.174.3.705

Bacterial entry and intracellular processing of Neisseria gonorrhoeae in epithelial cells: immunomorphological evidence for alterations in the major outer membrane protein P.IB

PMCID: PMC2118933  PMID: 1908511

Abstract

The fate of the major outer membrane protein of the gonococcus, P.IB, during the adherence, entry, and intracellular processing of the bacteria in infected epithelial cells was investigated using post- embedding immunoelectron microscopy. Various domains of the P.IB molecule were probed at different stages in the infection. These studies revealed that P.IB epitope exposure remained unaltered during the initial attachment of the bacteria to the host cells. In contrast, upon secondary attachment of the bacteria to the eukaryotic cells, apparent zones of adhesion were formed between the gonococci and the host cell membrane, which were characterized by loss of a defined P.IB epitope. These zones of adhesion with the altered P.IB immunoreactivity continued to exist and increased in number during cellular penetration, suggesting that they were essential to bacterial invasion into the eukaryotic cells. After bacterial entry, two classes of gonococci could be recognized; morphologically intact, P.IB-positive bacteria and disintegrated organisms that showed a change in, and, in a later stage, a complete loss of P.IB immunoreactivity. The intracellular alterations in the P.IB antigen could be prevented by treatment of the host cells with the lysosomotropic agent chloroquine. These observations point to a mechanism by which a subpopulation of intracellular gonococci can escape the epithelial cell defense by preventing or resisting exposure to host cell proteolytic activity.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apicella M. A., Mandrell R. E., Shero M., Wilson M. E., Griffiss J. M., Brooks G. F., Lammel C., Breen J. F., Rice P. A. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J Infect Dis. 1990 Aug;162(2):506–512. doi: 10.1093/infdis/162.2.506. [DOI] [PubMed] [Google Scholar]
  2. Barrera O., Swanson J. Proteins IA and IB exhibit different surface exposures and orientations in the outer membranes of Neisseria gonorrhoeae. Infect Immun. 1984 Jun;44(3):565–568. doi: 10.1128/iai.44.3.565-568.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bessen D., Gotschlich E. C. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect Immun. 1986 Oct;54(1):154–160. doi: 10.1128/iai.54.1.154-160.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blake M. S., Gotschlich E. C. Gonococcal membrane proteins: speculation on their role in pathogenesis. Prog Allergy. 1983;33:298–313. [PubMed] [Google Scholar]
  5. Blake M. S., Gotschlich E. C., Swanson J. Effects of proteolytic enzymes on the outer membrane proteins of Neisseria gonorrhoeae. Infect Immun. 1981 Jul;33(1):212–222. doi: 10.1128/iai.33.1.212-222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Braulke T., Geuze H. J., Slot J. W., Hasilik A., von Figura K. On the effects of weak bases and monensin on sorting and processing of lysosomal enzymes in human cells. Eur J Cell Biol. 1987 Jun;43(3):316–321. [PubMed] [Google Scholar]
  7. Brooks G. F., Lammel C. J. Humoral immune response to gonococcal infections. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S5–10. doi: 10.1128/cmr.2.suppl.s5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butt N. J., Virji M., Vayreda F., Lambden P. R., Heckels J. E. Gonococcal outer-membrane protein PIB: comparative sequence analysis and localization of epitopes which are recognized by type-specific and cross-reacting monoclonal antibodies. J Gen Microbiol. 1990 Nov;136(11):2165–2172. doi: 10.1099/00221287-136-11-2165. [DOI] [PubMed] [Google Scholar]
  9. Eaton L. J., Rest R. F. In vivo degradation of gonococcal outer membrane proteins within human leukocyte phagolysosomes. Infect Immun. 1983 Dec;42(3):1034–1040. doi: 10.1128/iai.42.3.1034-1040.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frasch C. E., Chapman S. S. Classification of Neisseria meningitidis group B into distinct serotypes. I. Serological typing by a microbactericidal method. Infect Immun. 1972 Jan;5(1):98–102. doi: 10.1128/iai.5.1.98-102.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gotschlich E. C. Development of a gonorrhoea vaccine: prospects, strategies and tactics. Bull World Health Organ. 1984;62(5):671–680. [PMC free article] [PubMed] [Google Scholar]
  12. Gotschlich E. C. The status of vaccines to meningococcal and gonococcal disease. Ann Inst Pasteur Microbiol. 1985 Nov-Dec;136B(3):341–355. doi: 10.1016/s0769-2609(85)80079-x. [DOI] [PubMed] [Google Scholar]
  13. Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guagliardi L. E., Koppelman B., Blum J. S., Marks M. S., Cresswell P., Brodsky F. M. Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature. 1990 Jan 11;343(6254):133–139. doi: 10.1038/343133a0. [DOI] [PubMed] [Google Scholar]
  15. HARKNESS A. H. The pathology of gonorrhoea. Br J Vener Dis. 1948 Dec;24(4):137–147. [PMC free article] [PubMed] [Google Scholar]
  16. Haines K. A., Yeh L., Blake M. S., Cristello P., Korchak H., Weissmann G. Protein I, a translocatable ion channel from Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting O2- generation. J Biol Chem. 1988 Jan 15;263(2):945–951. [PubMed] [Google Scholar]
  17. Horwitz M. A., Maxfield F. R. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol. 1984 Dec;99(6):1936–1943. doi: 10.1083/jcb.99.6.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horwitz M. A. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med. 1983 Dec 1;158(6):2108–2126. doi: 10.1084/jem.158.6.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Judd R. C. Protein I: structure, function, and genetics. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S41–S48. doi: 10.1128/cmr.2.suppl.s41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Judd R. C., Shafer W. M. Topographical alterations in proteins I of Neisseria gonorrhoeae correlated with lipooligosaccharide variation. Mol Microbiol. 1989 May;3(5):637–643. doi: 10.1111/j.1365-2958.1989.tb00211.x. [DOI] [PubMed] [Google Scholar]
  21. Kersten G. F., Teerlink T., Derks H. J., Verkleij A. J., van Wezel T. L., Crommelin D. J., Beuvery E. C. Incorporation of the major outer membrane protein of Neisseria gonorrhoeae in saponin-lipid complexes (iscoms): chemical analysis, some structural features, and comparison of their immunogenicity with three other antigen delivery systems. Infect Immun. 1988 Feb;56(2):432–438. doi: 10.1128/iai.56.2.432-438.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lynch E. C., Blake M. S., Gotschlich E. C., Mauro A. Studies of Porins: Spontaneously Transferred from Whole Cells and Reconstituted from Purified Proteins of Neisseria gonorrhoeae and Neisseria meningitidis. Biophys J. 1984 Jan;45(1):104–107. doi: 10.1016/S0006-3495(84)84127-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mandrell R. E., Griffiss J. M., Macher B. A. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med. 1988 Jul 1;168(1):107–126. doi: 10.1084/jem.168.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mauro A., Blake M., Labarca P. Voltage gating of conductance in lipid bilayers induced by porin from outer membrane of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1071–1075. doi: 10.1073/pnas.85.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McGee Z. A., Gorby G. L., Wyrick P. B., Hodinka R., Hoffman L. H. Parasite-directed endocytosis. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S311–S316. doi: 10.1093/cid/10.supplement_2.s311. [DOI] [PubMed] [Google Scholar]
  26. McGee Z. A., Johnson A. P., Taylor-Robinson D. Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis. 1981 Mar;143(3):413–422. doi: 10.1093/infdis/143.3.413. [DOI] [PubMed] [Google Scholar]
  27. Meyer T. F., van Putten J. P. Genetic mechanisms and biological implications of phase variation in pathogenic neisseriae. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S139–S145. doi: 10.1128/cmr.2.suppl.s139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Poolman J. T., Buchanan T. M. Monoclonal antibody activity against native and denatured forms of gonococcal outer membrane proteins as detected within ultrathin, longitudinal slices of polyacrylamide gels. J Immunol Methods. 1984 Dec 31;75(2):265–274. doi: 10.1016/0022-1759(84)90110-8. [DOI] [PubMed] [Google Scholar]
  29. Rest R. F., Pretzer E. Degradation of gonococcal outer membrane proteins by human neutrophil lysosomal proteases. Infect Immun. 1981 Oct;34(1):62–68. doi: 10.1128/iai.34.1.62-68.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sandstrom E. G., Chen K. C., Buchanan T. M. Serology of Neisseria gonorrhoeae: coagglutination serogroups WI and WII/III correspond to different outer membrane protein I molecules. Infect Immun. 1982 Nov;38(2):462–470. doi: 10.1128/iai.38.2.462-470.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sibley L. D., Weidner E., Krahenbuhl J. L. Phagosome acidification blocked by intracellular Toxoplasma gondii. 1985 May 30-Jun 5Nature. 315(6018):416–419. doi: 10.1038/315416a0. [DOI] [PubMed] [Google Scholar]
  32. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  33. Swanson J., Kraus S. J., Gotschlich E. C. Studies on gonococcus infection. I. Pili and zones of adhesion: their relation to gonococcal growth patterns. J Exp Med. 1971 Oct 1;134(4):886–906. doi: 10.1084/jem.134.4.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tam M. R., Buchanan T. M., Sandström E. G., Holmes K. K., Knapp J. S., Siadak A. W., Nowinski R. C. Serological classification of Neisseria gonorrhoeae with monoclonal antibodies. Infect Immun. 1982 Jun;36(3):1042–1053. doi: 10.1128/iai.36.3.1042-1053.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Teerlink T., Versantvoort H., Beuvery E. C. Antigenic and immunogenic properties of cyanogen bromide peptides from gonococcal outer membrane protein IB. Evidence for the existence of a surface-exposed conserved epitope. J Exp Med. 1987 Jul 1;166(1):63–76. doi: 10.1084/jem.166.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tjia K. F., van Putten J. P., Pels E., Zanen H. C. The interaction between Neisseria gonorrhoeae and the human cornea in organ culture. An electron microscopic study. Graefes Arch Clin Exp Ophthalmol. 1988;226(4):341–345. doi: 10.1007/BF02172964. [DOI] [PubMed] [Google Scholar]
  37. Voorhout W. F., Leunissen-Bijvelt J. J., Leunissen J. L., Verkleij A. J. Steric hindrance in immunolabelling. J Microsc. 1986 Mar;141(Pt 3):303–310. doi: 10.1111/j.1365-2818.1986.tb02724.x. [DOI] [PubMed] [Google Scholar]
  38. Waitkins S. A., Flynn J. Intracellular growth and type variation of Neisseria gonorrhoeae in tissue cell-cultures. J Med Microbiol. 1973 Aug;6(3):399–403. doi: 10.1099/00222615-6-3-399. [DOI] [PubMed] [Google Scholar]
  39. Weel J. F., Hopman C. T., van Putten J. P. Stable expression of lipooligosaccharide antigens during attachment, internalization, and intracellular processing of Neisseria gonorrhoeae in infected epithelial cells. Infect Immun. 1989 Nov;57(11):3395–3402. doi: 10.1128/iai.57.11.3395-3402.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weel J. F., van Putten J. P. Ultrastructural localization of gonococcal antigens in infected epithelial cells as visualized by post-embedding immuno-electronmicroscopy. Microb Pathog. 1988 Mar;4(3):213–222. doi: 10.1016/0882-4010(88)90071-x. [DOI] [PubMed] [Google Scholar]
  41. Wright S. D., Griffin F. M., Jr Activation of phagocytic cells' C3 receptors for phagocytosis. J Leukoc Biol. 1985 Aug;38(2):327–339. doi: 10.1002/jlb.38.2.327. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES