Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Oct 1;174(4):925–929. doi: 10.1084/jem.174.4.925

Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides

PMCID: PMC2118974  PMID: 1717634

Abstract

We have used antisense oligonucleotides to study the roles of transforming growth factor beta (TGF-beta) and the two antioncogenes, retinoblastoma susceptibility (Rb) and p53, in the negative regulation of proliferation of early hematopoietic cells in culture. The antisense TGF-beta sequence significantly enhanced the frequency of colony formation by multi-lineage, early erythroid, and granulomonocytic progenitors, but did not affect colony formation by late progenitors. Single cell culture and limiting dilution analysis indicated that autocrine TGF-beta is produced by a subpopulation of early progenitors. Antisense Rb but not antisense p53 yielded similar results in releasing multipotential progenitors (colony-forming unit- granulocyte/erythroid/macrophage/megakaryocyte) from quiescence. Rb antisense could partially reverse the inhibitory effect of exogenous TGF-beta. Anti-TGF-beta blocking antibodies, antisense TGF-beta, or Rb oligonucleotides all had similar effects. No additive effects were observed when these reagents were combined, suggesting a common pathway of action. Our results are consistent with the model that autocrine production of TGF-beta negatively regulates the cycling status of early hematopoietic progenitors through interaction with the Rb gene product.

Full Text

The Full Text of this article is available as a PDF (586.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broxmeyer H. E., Lu L., Cooper S., Schwall R. H., Mason A. J., Nikolics K. Selective and indirect modulation of human multipotential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9052–9056. doi: 10.1073/pnas.85.23.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buchkovich K., Duffy L. A., Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell. 1989 Sep 22;58(6):1097–1105. doi: 10.1016/0092-8674(89)90508-4. [DOI] [PubMed] [Google Scholar]
  3. Danielpour D., Dart L. L., Flanders K. C., Roberts A. B., Sporn M. B. Immunodetection and quantitation of the two forms of transforming growth factor-beta (TGF-beta 1 and TGF-beta 2) secreted by cells in culture. J Cell Physiol. 1989 Jan;138(1):79–86. doi: 10.1002/jcp.1041380112. [DOI] [PubMed] [Google Scholar]
  4. DeCaprio J. A., Ludlow J. W., Lynch D., Furukawa Y., Griffin J., Piwnica-Worms H., Huang C. M., Livingston D. M. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989 Sep 22;58(6):1085–1095. doi: 10.1016/0092-8674(89)90507-2. [DOI] [PubMed] [Google Scholar]
  5. Dyson N., Buchkovich K., Whyte P., Harlow E. The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell. 1989 Jul 28;58(2):249–255. doi: 10.1016/0092-8674(89)90839-8. [DOI] [PubMed] [Google Scholar]
  6. Ewen M. E., Ludlow J. W., Marsilio E., DeCaprio J. A., Millikan R. C., Cheng S. H., Paucha E., Livingston D. M. An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell. 1989 Jul 28;58(2):257–267. doi: 10.1016/0092-8674(89)90840-4. [DOI] [PubMed] [Google Scholar]
  7. Fauser A. A., Messner H. A. Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neurtophilic granulocytes and erythroblasts. Blood. 1979 May;53(5):1023–1027. [PubMed] [Google Scholar]
  8. Furukawa Y., DeCaprio J. A., Freedman A., Kanakura Y., Nakamura M., Ernst T. J., Livingston D. M., Griffin J. D. Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoietic cells. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2770–2774. doi: 10.1073/pnas.87.7.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham G. J., Wright E. G., Hewick R., Wolpe S. D., Wilkie N. M., Donaldson D., Lorimore S., Pragnell I. B. Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature. 1990 Mar 29;344(6265):442–444. doi: 10.1038/344442a0. [DOI] [PubMed] [Google Scholar]
  10. Keller J. R., Mantel C., Sing G. K., Ellingsworth L. R., Ruscetti S. K., Ruscetti F. W. Transforming growth factor beta 1 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines. J Exp Med. 1988 Aug 1;168(2):737–750. doi: 10.1084/jem.168.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim S. J., Lee H. D., Robbins P. D., Busam K., Sporn M. B., Roberts A. B. Regulation of transforming growth factor beta 1 gene expression by the product of the retinoblastoma-susceptibility gene. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3052–3056. doi: 10.1073/pnas.88.8.3052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laiho M., DeCaprio J. A., Ludlow J. W., Livingston D. M., Massagué J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell. 1990 Jul 13;62(1):175–185. doi: 10.1016/0092-8674(90)90251-9. [DOI] [PubMed] [Google Scholar]
  13. Lenfant M., Wdzieczak-Bakala J., Guittet E., Prome J. C., Sotty D., Frindel E. Inhibitor of hematopoietic pluripotent stem cell proliferation: purification and determination of its structure. Proc Natl Acad Sci U S A. 1989 Feb;86(3):779–782. doi: 10.1073/pnas.86.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ottmann O. G., Pelus L. M. Differential proliferative effects of transforming growth factor-beta on human hematopoietic progenitor cells. J Immunol. 1988 Apr 15;140(8):2661–2665. [PubMed] [Google Scholar]
  15. Pietenpol J. A., Stein R. W., Moran E., Yaciuk P., Schlegel R., Lyons R. M., Pittelkow M. R., Münger K., Howley P. M., Moses H. L. TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell. 1990 Jun 1;61(5):777–785. doi: 10.1016/0092-8674(90)90188-k. [DOI] [PubMed] [Google Scholar]
  16. Roberts A. B., Kim S. J., Sporn M. B. Is there a common pathway mediating growth inhibition by TGF-beta and the retinoblastoma gene product? Cancer Cells. 1991 Jan;3(1):19–21. [PubMed] [Google Scholar]
  17. Ruscetti F. W., Dubois C., Falk L. A., Jacobsen S. E., Sing G., Longo D. L., Wiltrout R. H., Keller J. R. In vivo and in vitro effects of TGF-beta 1 on normal and neoplastic haemopoiesis. Ciba Found Symp. 1991;157:212–231. doi: 10.1002/9780470514061.ch14. [DOI] [PubMed] [Google Scholar]
  18. Sing G. K., Keller J. R., Ellingsworth L. R., Ruscetti F. W. Transforming growth factor beta selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood. 1988 Nov;72(5):1504–1511. [PubMed] [Google Scholar]
  19. Stein C. A., Subasinghe C., Shinozuka K., Cohen J. S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988 Apr 25;16(8):3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zhou Y. Q., Stanley E. R., Clark S. C., Hatzfeld J. A., Levesque J. P., Federici C., Watt S. M., Hatzfeld A. Interleukin-3 and interleukin-1 alpha allow earlier bone marrow progenitors to respond to human colony-stimulating factor 1. Blood. 1988 Dec;72(6):1870–1874. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES