Abstract
In our studies of host defense to the intracellular protozoan Leishmania major, we uncovered a novel mechanism of antileishmanial defense that involves direct cell contact between effector CD4+ lymphocytes and Leishmania-infected macrophages. The mechanism is distinctive because it does not involve lymphokine secretion and induces no cytotoxic effects in the host cells; its expression is antigen-specific and genetically restricted. We now demonstrate that these effector CD4+ cells display tumor necrosis factor (TNF) on their surface and provide evidence that the membrane-associated TNF is involved in the activation of the antileishmanial defense. Using a Leishmania-specific cloned T-T cell hybridoma line (1B6; CD4+, T helper type 1) that activates antileishmanial defense in macrophages through cell contact and does not secrete TNF, we noted that only cells bearing surface TNF (TNF+), but not ones lacking surface TNF (TNF-), exerted these effects. Moreover, the antileishmanial effects excreted by TNF+ 1B6 cells as well as by lymph node CD4+ TNF+ lymphocytes could be blocked with anti-TNF antibody. We propose that membrane-associated TNF on CD4+ T cells may provide a mechanism of targeting activation signals to macrophages in an antigen-specific and genetically restricted manner.
Full Text
The Full Text of this article is available as a PDF (566.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beutler B., Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–655. doi: 10.1146/annurev.iy.07.040189.003205. [DOI] [PubMed] [Google Scholar]
- Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
- De Titto E. H., Catterall J. R., Remington J. S. Activity of recombinant tumor necrosis factor on Toxoplasma gondii and Trypanosoma cruzi. J Immunol. 1986 Aug 15;137(4):1342–1345. [PubMed] [Google Scholar]
- Flick D. A., Gifford G. E. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods. 1984 Mar 30;68(1-2):167–175. doi: 10.1016/0022-1759(84)90147-9. [DOI] [PubMed] [Google Scholar]
- Fowles R. E., Fajardo I. M., Leibowitch J. L., David J. R. The enhancement of macrophage bacteriostasis by products of activated lymphocytes. J Exp Med. 1973 Oct 1;138(4):952–964. doi: 10.1084/jem.138.4.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hämmerling G. J. T lymphocyte tissue culture lines produced by cell hybridization. Eur J Immunol. 1977 Oct;7(10):743–746. doi: 10.1002/eji.1830071018. [DOI] [PubMed] [Google Scholar]
- Kinkhabwala M., Sehajpal P., Skolnik E., Smith D., Sharma V. K., Vlassara H., Cerami A., Suthanthiran M. A novel addition to the T cell repertory. Cell surface expression of tumor necrosis factor/cachectin by activated normal human T cells. J Exp Med. 1990 Mar 1;171(3):941–946. doi: 10.1084/jem.171.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kriegler M., Perez C., DeFay K., Albert I., Lu S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988 Apr 8;53(1):45–53. doi: 10.1016/0092-8674(88)90486-2. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liew F. Y., Parkinson C., Millott S., Severn A., Carrier M. Tumour necrosis factor (TNF alpha) in leishmaniasis. I. TNF alpha mediates host protection against cutaneous leishmaniasis. Immunology. 1990 Apr;69(4):570–573. [PMC free article] [PubMed] [Google Scholar]
- Liu C. C., Detmers P. A., Jiang S. B., Young J. D. Identification and characterization of a membrane-bound cytotoxin of murine cytolytic lymphocytes that is related to tumor necrosis factor/cachectin. Proc Natl Acad Sci U S A. 1989 May;86(9):3286–3290. doi: 10.1073/pnas.86.9.3286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luettig B., Decker T., Lohmann-Matthes M. L. Evidence for the existence of two forms of membrane tumor necrosis factor: an integral protein and a molecule attached to its receptor. J Immunol. 1989 Dec 15;143(12):4034–4038. [PubMed] [Google Scholar]
- Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nacy C. A., Oster C. N., James S. L., Meltzer M. S. Activation of macrophages to kill rickettsiae and Leishmania: dissociation of intracellular microbicidal activities and extracellular destruction of neoplastic and helminth targets. Contemp Top Immunobiol. 1984;13:147–170. doi: 10.1007/978-1-4757-1445-6_8. [DOI] [PubMed] [Google Scholar]
- Neva F. A., Wyler D., Nash T. Cutaneous leishmaniasis--a case with persistent organisms after treatment in presence of normal immune response. Am J Trop Med Hyg. 1979 May;28(3):467–471. [PubMed] [Google Scholar]
- Panosian C. B., Sypek J. P., Wyler D. J. Cell contact-mediated macrophage activation for antileishmanial defense. I. Lymphocyte effector mechanism that is contact dependent and noncytotoxic. J Immunol. 1984 Dec;133(6):3358–3365. [PubMed] [Google Scholar]
- Sheehan K. C., Ruddle N. H., Schreiber R. D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J Immunol. 1989 Jun 1;142(11):3884–3893. [PubMed] [Google Scholar]
- Simon H. B., Sheagren J. N. Cellular immunity in vitro. I. Immunologically mediated enhancement of macrophage bactericidal capacity. J Exp Med. 1971 Jun 1;133(6):1377–1389. doi: 10.1084/jem.133.6.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon H. B., Sheagren J. N. Enhancement of macrophage bactericidal capacity by antigenically stimulated immune lymphocytes. Cell Immunol. 1972 Jun;4(2):163–174. doi: 10.1016/0008-8749(72)90015-9. [DOI] [PubMed] [Google Scholar]
- Sypek J. P., Matzilevich M. M., Wyler D. J. Th2 lymphocyte clone can activate macrophage antileishmanial defense by a lymphokine-independent mechanism in vitro and can augment parasite attrition in vivo. Cell Immunol. 1991 Mar;133(1):178–186. doi: 10.1016/0008-8749(91)90189-i. [DOI] [PubMed] [Google Scholar]
- Sypek J. P., Panosian C. B., Wyler D. J. Antigen recognition by effector T cells in antileishmanial defense. J Infect Dis. 1985 Nov;152(5):1057–1063. doi: 10.1093/infdis/152.5.1057. [DOI] [PubMed] [Google Scholar]
- Sypek J. P., Panosian C. B., Wyler D. J. Cell contact-mediated macrophage activation for antileishmanial defense. II. Identification of effector cell phenotype and genetic restriction. J Immunol. 1984 Dec;133(6):3351–3357. [PubMed] [Google Scholar]
- Sypek J. P., Wyler D. J. Cell contact-mediated macrophage activation for antileishmanial defence: mapping of the genetic restriction to the I region of the MHC. Clin Exp Immunol. 1985 Dec;62(3):449–457. [PMC free article] [PubMed] [Google Scholar]
- Sypek J. P., Wyler D. J. Susceptibility of lymphokine-resistant Leishmania to cell contact-mediated macrophage activation. J Infect Dis. 1988 Aug;158(2):392–397. doi: 10.1093/infdis/158.2.392. [DOI] [PubMed] [Google Scholar]
- Sypek J. P., Wyler D. J. T-cell hybridomas reveal two distinct mechanisms of antileishmanial defense. Infect Immun. 1990 May;58(5):1146–1152. doi: 10.1128/iai.58.5.1146-1152.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyler D. J., Beller D. I., Sypek J. P. Macrophage activation for antileishmanial defense by an apparently novel mechanism. J Immunol. 1987 Feb 15;138(4):1246–1249. [PubMed] [Google Scholar]