Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Nov 1;174(5):957–967. doi: 10.1084/jem.174.5.957

Anti-CD2 antibodies induce T cell unresponsiveness in vivo

PMCID: PMC2118978  PMID: 1682413

Abstract

The CD2 receptor functions as an adhesion and signal molecule in T cell recognition. Multimeric binding of CD2 on T cells to its physiologic ligand LFA-3 on cognate partner cells in vitro efficiently augments the antigen-specific T cell signal delivered by the T cell receptor/CD3 complex. The precise contribution of the antigen-nonspecific CD2-LFA-3 interactions to T cell immune responses in vivo, however, has been difficult to assess. Here we analyzed the role of CD2 in the murine immune response using a nondepleting anti-CD2 monoclonal antibody that induces a marked, reversible modulation of CD2 expression on murine T and B cells in situ. This modulation is dose and time dependent, specific for CD2, and does not require the Fc portion of the antibody. Anti-CD2 antibodies [rat IgG1 or F(ab')2] significantly inhibit the CD4+ T cell-mediated response to hen egg lysozyme and the cytotoxic CD8+ T cell response to a syngeneic tumor cell line. In both cases, anti-CD2 antibodies are only effective when administered before or within 24 h after antigen priming. The suppression of the antitumor response corresponds to a sixfold reduction of specific cytotoxic T lymphocyte precursor cells and results in the abrogation of protective antitumor immunity. Anti-CD2 antibodies also affect the humoral immune response to oxazolone: the isotype switch from specific IgM to IgG1 antibodies is delayed, whereas the IgM response is unaltered. In addition, a single antibody injection results in sustained polyclonal unresponsiveness of T cells irrespective of antigen priming and CD2 modulation. These results document that CD2-mediated signals induce a state of T cell unresponsiveness in vivo.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D. J., Bou-Gharios G., Beauchamp J. R., Plater-Zyberk C., Maini R. N., Olsen I. Function and regulation of the murine lymphocyte CD2 receptor. J Leukoc Biol. 1991 Apr;49(4):329–341. doi: 10.1002/jlb.49.4.329. [DOI] [PubMed] [Google Scholar]
  2. Altevogt P., Kohl U., Von Hoegen P., Lang E., Schirrmacher V. Antibody 12-15 cross-reacts with mouse Fc gamma receptors and CD2: study of thymus expression, genetic polymorphism and biosynthesis of the CD2 protein. Eur J Immunol. 1989 Feb;19(2):341–346. doi: 10.1002/eji.1830190219. [DOI] [PubMed] [Google Scholar]
  3. Altevogt P., Michaelis M., Kyewski B. Identical forms of the CD2 antigen expressed by mouse T and B lymphocytes. Eur J Immunol. 1989 Aug;19(8):1509–1512. doi: 10.1002/eji.1830190826. [DOI] [PubMed] [Google Scholar]
  4. Beyers A. D., Barclay A. N., Law D. A., He Q., Williams A. F. Activation of T lymphocytes via monoclonal antibodies against rat cell surface antigens with particular reference to CD2 antigen. Immunol Rev. 1989 Oct;111:59–77. doi: 10.1111/j.1600-065x.1989.tb00542.x. [DOI] [PubMed] [Google Scholar]
  5. Bierer B. E., Burakoff S. J. T-lymphocyte activation: the biology and function of CD2 and CD4. Immunol Rev. 1989 Oct;111:267–294. doi: 10.1111/j.1600-065x.1989.tb00549.x. [DOI] [PubMed] [Google Scholar]
  6. Blackman M. A., Burgert H. G., Gerhard-Burgert H., Woodland D. L., Palmer E., Kappler J. W., Marrack P. A role for clonal inactivation in T cell tolerance to Mls-1a. Nature. 1990 Jun 7;345(6275):540–542. doi: 10.1038/345540a0. [DOI] [PubMed] [Google Scholar]
  7. Bromberg J. S., Chavin K. D., Altevogt P., Kyewski B. A., Guckel B., Naji A., Barker C. F. Anti-CD2 monoclonal antibodies alter cell-mediated immunity in vivo. Transplantation. 1991 Jan;51(1):219–225. doi: 10.1097/00007890-199101000-00036. [DOI] [PubMed] [Google Scholar]
  8. Burkly L. C., Lo D., Flavell R. A. Tolerance in transgenic mice expressing major histocompatibility molecules extrathymically on pancreatic cells. Science. 1990 Jun 15;248(4961):1364–1368. doi: 10.1126/science.1694042. [DOI] [PubMed] [Google Scholar]
  9. Clark S. J., Law D. A., Paterson D. J., Puklavec M., Williams A. F. Activation of rat T lymphocytes by anti-CD2 monoclonal antibodies. J Exp Med. 1988 Jun 1;167(6):1861–1872. doi: 10.1084/jem.167.6.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coffman R. L., Weissman I. L. A monoclonal antibody that recognizes B cells and B cell precursors in mice. J Exp Med. 1981 Feb 1;153(2):269–279. doi: 10.1084/jem.153.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  12. Duplay P., Lancki D., Allison J. P. Distribution and ontogeny of CD2 expression by murine T cells. J Immunol. 1989 May 1;142(9):2998–3005. [PubMed] [Google Scholar]
  13. Dustin M. L., Olive D., Springer T. A. Correlation of CD2 binding and functional properties of multimeric and monomeric lymphocyte function-associated antigen 3. J Exp Med. 1989 Feb 1;169(2):503–517. doi: 10.1084/jem.169.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  15. Faissner A., Kruse J. J1/tenascin is a repulsive substrate for central nervous system neurons. Neuron. 1990 Nov;5(5):627–637. doi: 10.1016/0896-6273(90)90217-4. [DOI] [PubMed] [Google Scholar]
  16. Giegerich G. W., Hein W. R., Miyasaka M., Tiefenthaler G., Hünig T. Restricted expression of CD2 among subsets of sheep thymocytes and T lymphocytes. Immunology. 1989 Mar;66(3):354–361. [PMC free article] [PubMed] [Google Scholar]
  17. Havran W. L., Poenie M., Kimura J., Tsien R., Weiss A., Allison J. P. Expression and function of the CD3-antigen receptor on murine CD4+8+ thymocytes. Nature. 1987 Nov 12;330(6144):170–173. doi: 10.1038/330170a0. [DOI] [PubMed] [Google Scholar]
  18. Hirt W., Saalmüller A., Reddehase M. J. Distinct gamma/delta T cell receptors define two subsets of circulating porcine CD2-CD4-CD8- T lymphocytes. Eur J Immunol. 1990 Feb;20(2):265–269. doi: 10.1002/eji.1830200206. [DOI] [PubMed] [Google Scholar]
  19. Hünig T., Tiefenthaler G., Meyer zum Büschenfelde K. H., Meuer S. C. Alternative pathway activation of T cells by binding of CD2 to its cell-surface ligand. Nature. 1987 Mar 19;326(6110):298–301. doi: 10.1038/326298a0. [DOI] [PubMed] [Google Scholar]
  20. Kaartinen M., Griffiths G. M., Hamlyn P. H., Markham A. F., Karjalainen K., Pelkonen J. L., Mäkelä O., Milstein C. Anti-oxazolone hybridomas and the structure of the oxazolone idiotype. J Immunol. 1983 Feb;130(2):937–945. [PubMed] [Google Scholar]
  21. Kabelitz D. Do CD2 and CD3-TCR T-cell activation pathways function independently? Immunol Today. 1990 Feb;11(2):44–47. doi: 10.1016/0167-5699(90)90016-3. [DOI] [PubMed] [Google Scholar]
  22. Kawabe Y., Ochi A. Selective anergy of V beta 8+,CD4+ T cells in Staphylococcus enterotoxin B-primed mice. J Exp Med. 1990 Oct 1;172(4):1065–1070. doi: 10.1084/jem.172.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kubo R. T., Born W., Kappler J. W., Marrack P., Pigeon M. Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors. J Immunol. 1989 Apr 15;142(8):2736–2742. [PubMed] [Google Scholar]
  24. Kyewski B. A., Jenkinson E. J., Kingston R., Altevogt P., Owen M. J., Owen J. J. The effects of anti-CD2 antibodies on the differentiation of mouse thymocytes. Eur J Immunol. 1989 May;19(5):951–954. doi: 10.1002/eji.1830190526. [DOI] [PubMed] [Google Scholar]
  25. Kyewski B. A., Momburg F., Schirrmacher V. Phenotype of stromal cell-associated thymocytes in situ is compatible with selection of the T cell repertoire at an "immature" stage of thymic T cell differentiation. Eur J Immunol. 1987 Jul;17(7):961–967. doi: 10.1002/eji.1830170711. [DOI] [PubMed] [Google Scholar]
  26. Lamb J. R., Zanders E. D., Sewell W., Crumpton M. J., Feldmann M., Owen M. J. Antigen-specific T cell unresponsiveness in cloned helper T cells mediated via the CD2 or CD3/Ti receptor pathways. Eur J Immunol. 1987 Nov;17(11):1641–1644. doi: 10.1002/eji.1830171118. [DOI] [PubMed] [Google Scholar]
  27. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  28. Makgoba M. W., Sanders M. E., Shaw S. The CD2-LFA-3 and LFA-1-ICAM pathways: relevance to T-cell recognition. Immunol Today. 1989 Dec;10(12):417–422. doi: 10.1016/0167-5699(89)90039-X. [DOI] [PubMed] [Google Scholar]
  29. Markmann J., Lo D., Naji A., Palmiter R. D., Brinster R. L., Heber-Katz E. Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature. 1988 Dec 1;336(6198):476–479. doi: 10.1038/336476a0. [DOI] [PubMed] [Google Scholar]
  30. Matzku S., Kirchgessner H., Schirrmacher V. Antibody targeting to the murine lymphoma ESb-MP: increased accumulation due to reduced internalization into lymphoma cells as compared to normal lymphoid cells. Int J Cancer. 1988 Jan 15;41(1):108–114. doi: 10.1002/ijc.2910410120. [DOI] [PubMed] [Google Scholar]
  31. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  32. Moingeon P., Chang H. C., Sayre P. H., Clayton L. K., Alcover A., Gardner P., Reinherz E. L. The structural biology of CD2. Immunol Rev. 1989 Oct;111:111–144. doi: 10.1111/j.1600-065x.1989.tb00544.x. [DOI] [PubMed] [Google Scholar]
  33. Moingeon P., Chang H. C., Wallner B. P., Stebbins C., Frey A. Z., Reinherz E. L. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature. 1989 May 25;339(6222):312–314. doi: 10.1038/339312a0. [DOI] [PubMed] [Google Scholar]
  34. Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
  35. Nakamura T., Takahashi K., Fukazawa T., Koyanagi M., Yokoyama A., Kato H., Yagita H., Okumura K. Relative contribution of CD2 and LFA-1 to murine T and natural killer cell functions. J Immunol. 1990 Dec 1;145(11):3628–3634. [PubMed] [Google Scholar]
  36. Rammensee H. G., Kroschewski R., Frangoulis B. Clonal anergy induced in mature V beta 6+ T lymphocytes on immunizing Mls-1b mice with Mls-1a expressing cells. Nature. 1989 Jun 15;339(6225):541–544. doi: 10.1038/339541a0. [DOI] [PubMed] [Google Scholar]
  37. Rellahan B. L., Jones L. A., Kruisbeek A. M., Fry A. M., Matis L. A. In vivo induction of anergy in peripheral V beta 8+ T cells by staphylococcal enterotoxin B. J Exp Med. 1990 Oct 1;172(4):1091–1100. doi: 10.1084/jem.172.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rousseaux J., Rousseaux-Prevost R., Bazin H. Optimal conditions for the preparation of proteolytic fragments from monoclonal IgG of different rat IgG subclasses. Methods Enzymol. 1986;121:663–669. doi: 10.1016/0076-6879(86)21065-4. [DOI] [PubMed] [Google Scholar]
  39. Sarmiento M., Dialynas D. P., Lancki D. W., Wall K. A., Lorber M. I., Loken M. R., Fitch F. W. Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol Rev. 1982;68:135–169. doi: 10.1111/j.1600-065x.1982.tb01063.x. [DOI] [PubMed] [Google Scholar]
  40. Sayre P. H., Hussey R. E., Chang H. C., Ciardelli T. L., Reinherz E. L. Structural and binding analysis of a two domain extracellular CD2 molecule. J Exp Med. 1989 Mar 1;169(3):995–1009. doi: 10.1084/jem.169.3.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schild H. J., Kyewski B., Von Hoegen P., Schirrmacher V. CD4+ helper T cells are required for resistance to a highly metastatic murine tumor. Eur J Immunol. 1987 Dec;17(12):1863–1866. doi: 10.1002/eji.1830171231. [DOI] [PubMed] [Google Scholar]
  42. Schild H., von Hoegen P., Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. II. Augmented tumor-specific T cell response as a result of CD4+ and CD8+ immune T cell cooperation. Cancer Immunol Immunother. 1989;28(1):22–28. doi: 10.1007/BF00205796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schirrmacher V., Bosslet K., Shantz G., Clauer K., Hübsch D. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between a metastasizing variant and the parental tumor line revealed by cytotoxic T lymphocytes. Int J Cancer. 1979 Feb;23(2):245–252. doi: 10.1002/ijc.2910230216. [DOI] [PubMed] [Google Scholar]
  44. Selvaraj P., Plunkett M. L., Dustin M., Sanders M. E., Shaw S., Springer T. A. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. 1987 Mar 26-Apr 1Nature. 326(6111):400–403. doi: 10.1038/326400a0. [DOI] [PubMed] [Google Scholar]
  45. Sen J., Rosenberg N., Burakoff S. J. Expression and ontogeny of CD2 on murine B cells. J Immunol. 1990 Apr 15;144(8):2925–2930. [PubMed] [Google Scholar]
  46. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  47. Springer T. A. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Annu Rev Cell Biol. 1990;6:359–402. doi: 10.1146/annurev.cb.06.110190.002043. [DOI] [PubMed] [Google Scholar]
  48. Suthanthiran M. A novel model for antigen-dependent activation of normal human T cells. Transmembrane signaling by crosslinkage of the CD3/T cell receptor-alpha/beta complex with the cluster determinant 2 antigen. J Exp Med. 1990 Jun 1;171(6):1965–1979. doi: 10.1084/jem.171.6.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Van Wauwe J., Goossens J., Decock W., Kung P., Goldstein G. Suppression of human T-cell mitogenesis and E-rosette formation by the monoclonal antibody OKT11A. Immunology. 1981 Dec;44(4):865–871. [PMC free article] [PubMed] [Google Scholar]
  50. Von Hoegen P., Weber E., Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. Augmentation of the tumor-specific T cell response in the absence of an anti-viral response. Eur J Immunol. 1988 Aug;18(8):1159–1166. doi: 10.1002/eji.1830180803. [DOI] [PubMed] [Google Scholar]
  51. Waldmann H. Manipulation of T-cell responses with monoclonal antibodies. Annu Rev Immunol. 1989;7:407–444. doi: 10.1146/annurev.iy.07.040189.002203. [DOI] [PubMed] [Google Scholar]
  52. Yagita H., Asakawa J., Tansyo S., Nakamura T., Habu S., Okumura K. Expression and function of CD2 during murine thymocyte ontogeny. Eur J Immunol. 1989 Dec;19(12):2211–2217. doi: 10.1002/eji.1830191206. [DOI] [PubMed] [Google Scholar]
  53. Yagita H., Nakamura T., Karasuyama H., Okumura K. Monoclonal antibodies specific for murine CD2 reveal its presence on B as well as T cells. Proc Natl Acad Sci U S A. 1989 Jan;86(2):645–649. doi: 10.1073/pnas.86.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. van Kooyk Y., van de Wiel-van Kemenade P., Weder P., Kuijpers T. W., Figdor C. G. Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature. 1989 Dec 14;342(6251):811–813. doi: 10.1038/342811a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES