Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Nov 1;174(5):1189–1201. doi: 10.1084/jem.174.5.1189

Selection of antigen-specific, idiotype-positive B cells in transgenic mice expressing a rearranged M167-mu heavy chain gene

PMCID: PMC2118994  PMID: 1940797

Abstract

Flow cytometric analysis of antigen-specific, idiotype-positive (id+), B cell development in transgenic mice expressing a rearranged M167-mu gene shows that large numbers of phosphocholine (PC)-specific, M167-id+ B cells develop in the spleen and bone marrow of these mice. Random rearrangement of endogenous V kappa genes, in the absence of a subsequent receptor-driven selection, should give rise to equal numbers of T15- and M167-id+ B cells. The observed 100-500-fold amplification of M167-id+ B cells expressing an endogenous encoded V kappa 24]kappa 5 light chain in association with the M167 VH1-id transgene product appears to be an antigen driven, receptor-mediated process, since no amplification of non-PC-binding M167 VH1/V kappa 22, T15-id+ B cells occurs in these mu-only transgenic mice. The selection and amplification of antigen-specific, M167-id+ B cells requires surface expression of the mu transgene product; thus, no enhancement of M167- id+ B cells occurs in the M167 mu delta mem-transgenic mice, which cannot insert the mu transgene product into the B cell membrane. Surprisingly, no selection of PC-specific B cells occurs in M167-kappa- transgenic mice although large numbers of B cells expressing a crossreactive M167-id are present in the spleen and bone marrow of these mice. The failure to develop detectable numbers of M167-id+, PC- specific B cells in M167-kappa-transgenic mice may be due to a very low frequency of M167-VH-region formation during endogenous rearrangement of VH1 to D-JH segments. The somatic generation of the M167 version of a rearranged VH1 gene may occur in less than one of every 10(5) bone marrow B cells, and a 500-fold amplification of this M167-Id+ B cell would not be detectable by flow cytometry even though the anti-PC antibody produced by these B cells is detectable in the serum of M167- kappa-transgenic mice after immunization with PC.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashman R. F. Lymphocyte receptor movement induced by sheep erythrocyte binding. J Immunol. 1973 Jul;111(1):212–220. [PubMed] [Google Scholar]
  2. Bechhofer D. H. A method for sequencing polymerase chain reaction products can be used to sequence Bacillus subtilis "miniprep" plasmid DNA. Biotechniques. 1991 Jan;10(1):17-9, 20. [PubMed] [Google Scholar]
  3. Brodeur P. H., Riblet R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur J Immunol. 1984 Oct;14(10):922–930. doi: 10.1002/eji.1830141012. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Claflin J. L. Uniformity in the clonal repertoire for the immune response to phosphorylcholine in mice. Eur J Immunol. 1976 Oct;6(10):669–674. doi: 10.1002/eji.1830061002. [DOI] [PubMed] [Google Scholar]
  6. Cosenza H., Köhler H. Specific inhibition of plaque formation to phosphorylcholine by antibody against antibody. Science. 1972 Jun 2;176(4038):1027–1029. doi: 10.1126/science.176.4038.1027. [DOI] [PubMed] [Google Scholar]
  7. Crews S., Griffin J., Huang H., Calame K., Hood L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981 Jul;25(1):59–66. doi: 10.1016/0092-8674(81)90231-2. [DOI] [PubMed] [Google Scholar]
  8. D'Hoostelaere L. A., Huppi K., Mock B., Mallett C., Potter M. The Ig kappa L chain allelic groups among the Ig kappa haplotypes and Ig kappa crossover populations suggest a gene order. J Immunol. 1988 Jul 15;141(2):652–661. [PubMed] [Google Scholar]
  9. Decker D. J., Boyle N. E., Koziol J. A., Klinman N. R. The expression of the Ig H chain repertoire in developing bone marrow B lineage cells. J Immunol. 1991 Jan 1;146(1):350–361. [PubMed] [Google Scholar]
  10. Desaymard C., Giusti A. M., Scharff M. D. Rat anti-T15 monoclonal antibodies with specificity for VH- and VH-VL epitopes. Mol Immunol. 1984 Oct;21(10):961–967. doi: 10.1016/0161-5890(84)90154-8. [DOI] [PubMed] [Google Scholar]
  11. Dildrop R., Krawinkel U., Winter E., Rajewsky K. VH-gene expression in murine lipopolysaccharide blasts distributes over the nine known VH-gene groups and may be random. Eur J Immunol. 1985 Nov;15(11):1154–1156. doi: 10.1002/eji.1830151117. [DOI] [PubMed] [Google Scholar]
  12. Feeney A. J., Clarke S. H., Mosier D. E. Specific H chain junctional diversity may be required for non-T15 antibodies to bind phosphorylcholine. J Immunol. 1988 Aug 15;141(4):1267–1272. [PubMed] [Google Scholar]
  13. Feeney A. J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med. 1990 Nov 1;172(5):1377–1390. doi: 10.1084/jem.172.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feeney A. J., Thuerauf D. J. Sequence and fine specificity analysis of primary 511 anti-phosphorylcholine antibodies. J Immunol. 1989 Dec 15;143(12):4061–4068. [PubMed] [Google Scholar]
  15. Freitas A. A., Lembezat M. P., Coutinho A. Expression of antibody V-regions is genetically and developmentally controlled and modulated by the B lymphocyte environment. Int Immunol. 1989;1(4):342–354. doi: 10.1093/intimm/1.4.342. [DOI] [PubMed] [Google Scholar]
  16. Förster I., Rajewsky K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4781–4784. doi: 10.1073/pnas.87.12.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Förster I., Vieira P., Rajewsky K. Flow cytometric analysis of cell proliferation dynamics in the B cell compartment of the mouse. Int Immunol. 1989;1(4):321–331. doi: 10.1093/intimm/1.4.321. [DOI] [PubMed] [Google Scholar]
  18. Gearhart P. J., Bogenhagen D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3439–3443. doi: 10.1073/pnas.80.11.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hamlyn P. H., Gait M. J., Milstein C. Complete sequence of an immunoglobulin mRNA using specific priming and the dideoxynucleotide method of RNA sequencing. Nucleic Acids Res. 1981 Sep 25;9(18):4485–4494. doi: 10.1093/nar/9.18.4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jeong H. D., Teale J. M. Comparison of the fetal and adult functional B cell repertoires by analysis of VH gene family expression. J Exp Med. 1988 Aug 1;168(2):589–603. doi: 10.1084/jem.168.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaushik A., Schulze D. H., Bona C., Kelsoe G. Murine V kappa gene expression does not follow the VH paradigm. J Exp Med. 1989 May 1;169(5):1859–1864. doi: 10.1084/jem.169.5.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kearney J. F., Vakil M. Idiotype-directed interactions during ontogeny play a major role in the establishment of the adult B cell repertoire. Immunol Rev. 1986 Dec;94:39–50. doi: 10.1111/j.1600-065x.1986.tb01163.x. [DOI] [PubMed] [Google Scholar]
  23. Kenny J. J., Finkelman F., Macchiarini F., Kopp W. C., Storb U., Longo D. L. Alteration of the B cell surface phenotype, immune response to phosphocholine and the B cell repertoire in M167 mu plus kappa transgenic mice. J Immunol. 1989 Jun 15;142(12):4466–4474. [PubMed] [Google Scholar]
  24. Kenny J. J., Guelde G., Claflin J. L., Scher I. Altered idiotype response to phosphocholine in mice bearing an x-linked immune defect. J Immunol. 1981 Oct;127(4):1629–1633. [PubMed] [Google Scholar]
  25. Kenny J. J., Stall A. M., Sieckmann D. G., Lamers M. C., Finkelman F. D., Finch L., Longo D. L. Receptor-mediated elimination of phosphocholine-specific B cells in x-linked immune-deficient mice. J Immunol. 1991 Apr 15;146(8):2568–2577. [PubMed] [Google Scholar]
  26. Kenny J. J., Yaffe L. J., Ahmed A., Metcalf E. S. Contribution of Lyb 5+ and Lyb 5- B cells to the primary and secondary phosphocholine-specific antibody response. J Immunol. 1983 Jun;130(6):2574–2579. [PubMed] [Google Scholar]
  27. Klinman N. R., Stone M. R. Role of variable region gene expression and environmental selection in determining the antiphosphorylcholine B cell repertoire. J Exp Med. 1983 Dec 1;158(6):1948–1961. doi: 10.1084/jem.158.6.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lieberman R., Potter M., Mushinski E. B., Humphrey W., Jr, Rudikoff S. Genetics of a new IgVH (T15 idiotype) marker in the mouse regulating natural antibody to phosphorylcholine. J Exp Med. 1974 Apr 1;139(4):983–1001. doi: 10.1084/jem.139.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Malynn B. A., Yancopoulos G. D., Barth J. E., Bona C. A., Alt F. W. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med. 1990 Mar 1;171(3):843–859. doi: 10.1084/jem.171.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Masmoudi H., Mota-Santos T., Huetz F., Coutinho A., Cazenave P. A. All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int Immunol. 1990;2(6):515–520. doi: 10.1093/intimm/2.6.515. [DOI] [PubMed] [Google Scholar]
  31. Max E. E., Maizel J. V., Jr, Leder P. The nucleotide sequence of a 5.5-kilobase DNA segment containing the mouse kappa immunoglobulin J and C region genes. J Biol Chem. 1981 May 25;256(10):5116–5120. [PubMed] [Google Scholar]
  32. Metcalf E. S., Scher I., Klinman N. R. Susceptibility to in vitro tolerance induction of adult B cells from mice with an X-linked B-cell defect. J Exp Med. 1980 Feb 1;151(2):486–491. doi: 10.1084/jem.151.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mond J. J., Brunswick M. A role for IFN-gamma and NK cells in immune responses to T cell-regulated antigens types 1 and 2. Immunol Rev. 1987 Oct;99:105–118. doi: 10.1111/j.1600-065x.1987.tb01174.x. [DOI] [PubMed] [Google Scholar]
  34. Osmond D. G. B cell development in the bone marrow. Semin Immunol. 1990 May;2(3):173–180. [PubMed] [Google Scholar]
  35. Ritchie K. A., Brinster R. L., Storb U. Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in kappa transgenic mice. Nature. 1984 Dec 6;312(5994):517–520. doi: 10.1038/312517a0. [DOI] [PubMed] [Google Scholar]
  36. Rudikoff S. Immunoglobulin structure--function correlates: antigen binding and idiotypes. Contemp Top Mol Immunol. 1983;9:169–209. doi: 10.1007/978-1-4684-4517-6_6. [DOI] [PubMed] [Google Scholar]
  37. Schulze D. H., Kelsoe G. Genotypic analysis of B cell colonies by in situ hybridization. Stoichiometric expression of three VH families in adult C57BL/6 and BALB/c mice. J Exp Med. 1987 Jul 1;166(1):163–172. doi: 10.1084/jem.166.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Selsing E., Storb U. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell. 1981 Jul;25(1):47–58. doi: 10.1016/0092-8674(81)90230-0. [DOI] [PubMed] [Google Scholar]
  39. Sheehan K. M., Brodeur P. H. Molecular cloning of the primary IgH repertoire: a quantitative analysis of VH gene usage in adult mice. EMBO J. 1989 Aug;8(8):2313–2320. doi: 10.1002/j.1460-2075.1989.tb08358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sher A., Cohn M. Inheritance of an idiotype associated with the immune response of inbred mice to phosphorylcholine. Eur J Immunol. 1972 Aug;2(4):319–326. doi: 10.1002/eji.1830020405. [DOI] [PubMed] [Google Scholar]
  41. Sieckmann D. G., Stall A. M., Subbarao B. A mouse monoclonal antibody specific for an allotypic determinant of the Igha allele of murine IgM: genetic and functional analysis of Igh-6a epitopes using anti-IgM monoclonal antibodies. Hybridoma. 1991 Feb;10(1):121–135. doi: 10.1089/hyb.1991.10.121. [DOI] [PubMed] [Google Scholar]
  42. Stenzel-Poore M. P., Rittenberg M. B. Clonal diversity, somatic mutation, and immune memory to phosphocholine-keyhole limpet hemocyanin. J Immunol. 1989 Dec 15;143(12):4123–4133. [PubMed] [Google Scholar]
  43. Storb U., Pinkert C., Arp B., Engler P., Gollahon K., Manz J., Brady W., Brinster R. L. Transgenic mice with mu and kappa genes encoding antiphosphorylcholine antibodies. J Exp Med. 1986 Aug 1;164(2):627–641. doi: 10.1084/jem.164.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Titus J. A., Haugland R., Sharrow S. O., Segal D. M. Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods. 1982;50(2):193–204. doi: 10.1016/0022-1759(82)90225-3. [DOI] [PubMed] [Google Scholar]
  45. Unkeless J. C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wicker L. S., Guelde G., Scher I., Kenny J. J. The asymmetry in idiotype-isotype expression in the response to phosphocholine is due to divergence in the expressed repertoires of Lyb-5+ and Lyb-5- B cells. J Immunol. 1983 Nov;131(5):2468–2476. [PubMed] [Google Scholar]
  47. Wood D. L., Coleclough C. Different joining region J elements of the murine kappa immunoglobulin light chain locus are used at markedly different frequencies. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4756–4760. doi: 10.1073/pnas.81.15.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yancopoulos G. D., Desiderio S. V., Paskind M., Kearney J. F., Baltimore D., Alt F. W. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature. 1984 Oct 25;311(5988):727–733. doi: 10.1038/311727a0. [DOI] [PubMed] [Google Scholar]
  49. Yancopoulos G. D., Malynn B. A., Alt F. W. Developmentally regulated and strain-specific expression of murine VH gene families. J Exp Med. 1988 Jul 1;168(1):417–435. doi: 10.1084/jem.168.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES