Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Dec 1;174(6):1661–1664. doi: 10.1084/jem.174.6.1661

Human immunodeficiency virus infection of eosinophils in human bone marrow cultures

PMCID: PMC2119059  PMID: 1744591

Abstract

Normal human bone marrow, cultured in vitro with interleukin 5 to promote eosinophil production and maturation, was inoculated with cell- free isolates of human immunodeficiency virus type 1 (HIV-1). CD4 expression by eosinophil precursors, determined by immunocytochemistry, was found to be greatest early in their maturation with a rapid decline after 28 d in culture. Productive HIV infection of eosinophil precursors was detected 14 d after inoculation, by a combination of immunostaining for HIV-1 p24 and gp41/160 and in situ hybridization for viral RNA, together with assay of culture supernatants for p24 antigen and reverse transcriptase activity. Thus, eosinophils are susceptible to productive HIV-1 infection in vitro and may be an important reservoir for the virus in vivo.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clutterbuck E. J., Hirst E. M., Sanderson C. J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood. 1989 May 1;73(6):1504–1512. [PubMed] [Google Scholar]
  2. Conrad M. E. Hematologic manifestations of parasitic infections. Semin Hematol. 1971 Jul;8(3):267–303. [PubMed] [Google Scholar]
  3. Cordell J. L., Falini B., Erber W. N., Ghosh A. K., Abdulaziz Z., MacDonald S., Pulford K. A., Stein H., Mason D. Y. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem. 1984 Feb;32(2):219–229. doi: 10.1177/32.2.6198355. [DOI] [PubMed] [Google Scholar]
  4. Cordonnier A., Montagnier L., Emerman M. Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature. 1989 Aug 17;340(6234):571–574. doi: 10.1038/340571a0. [DOI] [PubMed] [Google Scholar]
  5. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  6. Folks T. M., Kessler S. W., Orenstein J. M., Justement J. S., Jaffe E. S., Fauci A. S. Infection and replication of HIV-1 in purified progenitor cells of normal human bone marrow. Science. 1988 Nov 11;242(4880):919–922. doi: 10.1126/science.2460922. [DOI] [PubMed] [Google Scholar]
  7. Fujisawa T., Abu-Ghazaleh R., Kita H., Sanderson C. J., Gleich G. J. Regulatory effect of cytokines on eosinophil degranulation. J Immunol. 1990 Jan 15;144(2):642–646. [PubMed] [Google Scholar]
  8. Hansel T. T., Pound J. D., Thompson R. A. Isolation of eosinophils from human blood. J Immunol Methods. 1990 Mar 9;127(2):153–164. doi: 10.1016/0022-1759(90)90064-3. [DOI] [PubMed] [Google Scholar]
  9. Hoffman A. D., Banapour B., Levy J. A. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985 Dec;147(2):326–335. doi: 10.1016/0042-6822(85)90135-7. [DOI] [PubMed] [Google Scholar]
  10. Kitano K., Abboud C. N., Ryan D. H., Quan S. G., Baldwin G. C., Golde D. W. Macrophage-active colony-stimulating factors enhance human immunodeficiency virus type 1 infection in bone marrow stem cells. Blood. 1991 Apr 15;77(8):1699–1705. [PubMed] [Google Scholar]
  11. Lucey D. R., Dorsky D. I., Nicholson-Weller A., Weller P. F. Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med. 1989 Jan 1;169(1):327–332. doi: 10.1084/jem.169.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Patterson S., Gross J., Webster A. D. DNA probes bind non-specifically to eosinophils during in situ hybridization: carbol chromotrope blocks binding to eosinophils but does not inhibit hybridization to specific nucleotide sequences. J Virol Methods. 1989 Feb;23(2):105–109. doi: 10.1016/0166-0934(89)90124-9. [DOI] [PubMed] [Google Scholar]
  13. Rothenberg M. E., Petersen J., Stevens R. L., Silberstein D. S., McKenzie D. T., Austen K. F., Owen W. F., Jr IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989 Oct 1;143(7):2311–2316. [PubMed] [Google Scholar]
  14. Sakaguchi M., Sato T., Groopman J. E. Human immunodeficiency virus infection of megakaryocytic cells. Blood. 1991 Feb 1;77(3):481–485. [PubMed] [Google Scholar]
  15. Sheff D. M., Owen W. F., Jr, Austen K. F. Eosinophil phenotypes and LTC4 generation in vitro and in hypereosinophilic states. Adv Prostaglandin Thromboxane Leukot Res. 1991;21B:481–488. [PubMed] [Google Scholar]
  16. Stevenson M., Zhang X. H., Volsky D. J. Downregulation of cell surface molecules during noncytopathic infection of T cells with human immunodeficiency virus. J Virol. 1987 Dec;61(12):3741–3748. doi: 10.1128/jvi.61.12.3741-3748.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weller P. F. The immunobiology of eosinophils. N Engl J Med. 1991 Apr 18;324(16):1110–1118. doi: 10.1056/NEJM199104183241607. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES