Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Jan 1;175(1):81–90. doi: 10.1084/jem.175.1.81

Tumor necrosis factor production during human renal allograft rejection is associated with depression of plasma protein C and free protein S levels and decreased intragraft thrombomodulin expression

PMCID: PMC2119088  PMID: 1309855

Abstract

Fibrin deposition is a common accompaniment of renal allograft rejection, indicating disruption of the normal physiologic balance between procoagulant and anticoagulant pathways. In vitro, tumor necrosis factor (TNF) induces endothelial expression of the procoagulant, tissue factor, and downregulation of thrombomodulin, a key component of the thrombomodulin/protein C (PC)/protein S (PS) pathway, which normally maintains an anticoagulant state by inactivating thrombin, preventing further thrombin formation by degrading factors Va and VIIIa, and decreasing plasminogen activator inhibitor activity. Raised levels of TNF were recently demonstrated within the blood of patients during episodes of renal allograft injection, and may be an early and discriminatory marker of rejection. This led us to investigate prospectively whether monitoring of serum TNF levels was of value clinically, and was associated with effects on circulating PC and PS levels, or alterations in intragraft thrombomodulin expression. Plasma samples (n = 454) were collected three times/week from all patients (n = 25) undergoing renal transplantation during a 9-month consecutive period, and assayed by ELISA and functional assays for TNF, PC, and free PS (FPS). Portions of renal biopsies, taken to evaluate episodes of acute deterioration of renal function, were evaluated by immunoperoxidase labeling for the presence and distribution of TNF, thrombomodulin, PC, PS, thrombin, fibrin, and factors V and VIII. Comparison of 78 plasma samples collected during 26 episodes of biopsy-proven acute cellular rejection with samples collected during periods of stable renal function (n = 349) showed that TNF levels rose significantly (390 +/- 242 pg/ml, p less than 0.01) above background levels 3 days before rising serum creatinine concentrations, and peaked (2,426 +/- 978 pg/ml) on the day of clinical rejection. PC-antigen (Ag) concentrations also decreased 3 days before rejection (68 +/- 13%, p less than 0.05), and were maximally depressed (49% +/- 16%, p less than 0.001) on the day of rejection. FPS levels were normal until the day before rejection (63% +/- 8%, p less than 0.01) and, like PC, were maximally depressed (43 +/- 10%) at rejection. Plasma TNF levels were significantly and inversely correlated with PC-Ag (p less than 0.001) and FPS (p less than 0.005) levels during rejection, regardless of whether such rejection episodes were steroid responsive or required OKT3 monoclonal antibody therapy. TNF, PC, and FPS levels were normal during episodes of cyclosporine toxicity and viral infection.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowicz D., Schandene L., Goldman M., Crusiaux A., Vereerstraeten P., De Pauw L., Wybran J., Kinnaert P., Dupont E., Toussaint C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 1989 Apr;47(4):606–608. doi: 10.1097/00007890-198904000-00008. [DOI] [PubMed] [Google Scholar]
  2. Akira S., Hirano T., Taga T., Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 1990 Aug;4(11):2860–2867. [PubMed] [Google Scholar]
  3. Beutler B., Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–655. doi: 10.1146/annurev.iy.07.040189.003205. [DOI] [PubMed] [Google Scholar]
  4. Bevilacqua M. P., Pober J. S., Majeau G. R., Fiers W., Cotran R. S., Gimbrone M. A., Jr Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4533–4537. doi: 10.1073/pnas.83.12.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bishop G. A., Waugh J. A., Landers D. V., Krensky A. M., Hall B. M. Microvascular destruction in renal transplant rejection. Transplantation. 1989 Sep;48(3):408–414. doi: 10.1097/00007890-198909000-00011. [DOI] [PubMed] [Google Scholar]
  6. Cantarovich D., Le Mauff B., Hourmant M., Giral M., Denis M., Hirn M., Jacques Y., Soulillou J. P. Anti-interleukin 2 receptor monoclonal antibody in the treatment of ongoing acute rejection episodes of human kidney graft--a pilot study. Transplantation. 1989 Mar;47(3):454–457. doi: 10.1097/00007890-198903000-00011. [DOI] [PubMed] [Google Scholar]
  7. Collins T., Lapierre L. A., Fiers W., Strominger J. L., Pober J. S. Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-A,B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci U S A. 1986 Jan;83(2):446–450. doi: 10.1073/pnas.83.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colvin R. B., Preffer F. I., Fuller T. C., Brown M. C., Ip S. H., Kung P. C., Cosimi A. B. A critical analysis of serum and urine interleukin-2 receptor assays in renal allograft recipients. Transplantation. 1989 Nov;48(5):800–805. doi: 10.1097/00007890-198911000-00015. [DOI] [PubMed] [Google Scholar]
  9. Esmon C. T. The regulation of natural anticoagulant pathways. Science. 1987 Mar 13;235(4794):1348–1352. doi: 10.1126/science.3029867. [DOI] [PubMed] [Google Scholar]
  10. Francis R. B., Jr, Seyfert U. Rapid amidolytic assay of protein C in whole plasma using an activator from the venom of Agkistrodon contortrix. Am J Clin Pathol. 1987 May;87(5):619–625. doi: 10.1093/ajcp/87.5.619. [DOI] [PubMed] [Google Scholar]
  11. Gamble J. R., Harlan J. M., Klebanoff S. J., Vadas M. A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8667–8671. doi: 10.1073/pnas.82.24.8667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffin J. H., Mosher D. F., Zimmerman T. S., Kleiss A. J. Protein C, an antithrombotic protein, is reduced in hospitalized patients with intravascular coagulation. Blood. 1982 Jul;60(1):261–264. [PubMed] [Google Scholar]
  13. Hancock W. W. Analysis of intragraft effector mechanisms associated with human renal allograft rejection: immunohistological studies with monoclonal antibodies. Immunol Rev. 1984;77:61–84. doi: 10.1111/j.1600-065x.1984.tb00718.x. [DOI] [PubMed] [Google Scholar]
  14. Hancock W. W., Atkins R. C. Immunohistological studies with monoclonal antibodies. Methods Enzymol. 1986;121:828–848. doi: 10.1016/0076-6879(86)21080-0. [DOI] [PubMed] [Google Scholar]
  15. Hancock W. W., Atkins R. C. Monoclonal antibodies to human glomerular cells: a marker for glomerular epithelial cells. Nephron. 1983;33(2):83–90. doi: 10.1159/000182918. [DOI] [PubMed] [Google Scholar]
  16. Hancock W. W., Gee D., De Moerloose P., Rickles F. R., Ewan V. A., Atkins R. C. Immunohistological analysis of serial biopsies taken during human renal allograft rejection. Changing profile of infiltrating cells and activation of the coagulation system. Transplantation. 1985 Apr;39(4):430–438. doi: 10.1097/00007890-198504000-00018. [DOI] [PubMed] [Google Scholar]
  17. Hancock W. W., Tanaka K., Salem H. H., Tilney N. L., Atkins R. C., Kupiec-Weglinski J. W. TNF as a mediator of cardiac transplant rejection, including effects on the intragraft protein C/protein S/thrombomodulin pathway. Transplant Proc. 1991 Feb;23(1 Pt 1):235–237. [PubMed] [Google Scholar]
  18. Hancock W. W., Thomson N. M., Atkins R. C. Composition of interstitial cellular infiltrate identified by monoclonal antibodies in renal biopsies of rejecting human renal allografts. Transplantation. 1983 May;35(5):458–463. doi: 10.1097/00007890-198305000-00013. [DOI] [PubMed] [Google Scholar]
  19. Hoogendoorn H., Nesheim M. E., Giles A. R. A qualitative and quantitative analysis of the activation and inactivation of protein C in vivo in a primate model. Blood. 1990 Jun 1;75(11):2164–2171. [PubMed] [Google Scholar]
  20. Imagawa D. K., Millis J. M., Olthoff K. M., Seu P., Dempsey R. A., Hart J., Terasaki P. I., Wasef E. M., Busuttil R. W. The role of tumor necrosis factor in allograft rejection. II. Evidence that antibody therapy against tumor necrosis factor-alpha and lymphotoxin enhances cardiac allograft survival in rats. Transplantation. 1990 Aug;50(2):189–193. doi: 10.1097/00007890-199008000-00003. [DOI] [PubMed] [Google Scholar]
  21. Kincaid-Smith P. Histological diagnosis of rejection of renal homografts in man. Lancet. 1967 Oct 21;2(7521):849–852. doi: 10.1016/s0140-6736(67)92589-5. [DOI] [PubMed] [Google Scholar]
  22. Krönke M., Leonard W. J., Depper J. M., Arya S. K., Wong-Staal F., Gallo R. C., Waldmann T. A., Greene W. C. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5214–5218. doi: 10.1073/pnas.81.16.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Libby P., Ordovas J. M., Auger K. R., Robbins A. H., Birinyi L. K., Dinarello C. A. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986 Aug;124(2):179–185. [PMC free article] [PubMed] [Google Scholar]
  24. Maury C. P., Teppo A. M. Raised serum levels of cachectin/tumor necrosis factor alpha in renal allograft rejection. J Exp Med. 1987 Oct 1;166(4):1132–1137. doi: 10.1084/jem.166.4.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maury C. P., Teppo A. M. Serum immunoreactive interleukin 1 in renal transplant recipients. Association of raised levels with graft rejection episodes. Transplantation. 1988 Jan;45(1):143–147. doi: 10.1097/00007890-198801000-00031. [DOI] [PubMed] [Google Scholar]
  26. Miossec P., Cavender D., Ziff M. Production of interleukin 1 by human endothelial cells. J Immunol. 1986 Apr 1;136(7):2486–2491. [PubMed] [Google Scholar]
  27. Nawroth P. P., Stern D. M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986 Mar 1;163(3):740–745. doi: 10.1084/jem.163.3.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Platt J. L., LeBien T. W., Michael A. F. Interstitial mononuclear cell populations in renal graft rejection. Identification by monoclonal antibodies in tissue sections. J Exp Med. 1982 Jan 1;155(1):17–30. doi: 10.1084/jem.155.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pober J. S., Bevilacqua M. P., Mendrick D. L., Lapierre L. A., Fiers W., Gimbrone M. A., Jr Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol. 1986 Mar 1;136(5):1680–1687. [PubMed] [Google Scholar]
  30. Serón D., Alexopoulos E., Raftery M. J., Hartley R. B., Cameron J. S. Diagnosis of rejection in renal allograft biopsies using the presence of activated and proliferating cells. Transplantation. 1989 May;47(5):811–816. doi: 10.1097/00007890-198905000-00013. [DOI] [PubMed] [Google Scholar]
  31. Sørensen P. J., Nielsen A. H., Knudsen F., Schmitz O., Dyerberg J. Protein C in renal allotransplantation during the perioperative period. J Intern Med. 1989 Aug;226(2):101–105. doi: 10.1111/j.1365-2796.1989.tb01362.x. [DOI] [PubMed] [Google Scholar]
  32. Ueda H., Hancock W. W., Cheung Y. C., Diamantstein T., Tilney N. L., Kupiec-Weglinski J. W. The mechanism of synergistic interaction between anti-interleukin 2 receptor monoclonal antibody and cyclosporine therapy in rat recipients of organ allografts. Transplantation. 1990 Oct;50(4):545–550. doi: 10.1097/00007890-199010000-00002. [DOI] [PubMed] [Google Scholar]
  33. Ueda H., Hancock W. W., Cheung Y. C., Tanaka K., Kupiec-Weglinski J. W., Tilney N. L. Differential effects of interleukin 2 receptor-targeted therapy on heart and kidney allografts in rats. Depression of effectiveness of ART-18 monoclonal antibody treatment by uremia. Transplantation. 1990 Jun;49(6):1124–1129. doi: 10.1097/00007890-199006000-00019. [DOI] [PubMed] [Google Scholar]
  34. Van Oers M. H., Van der Heyden A. A., Aarden L. A. Interleukin 6 (IL-6) in serum and urine of renal transplant recipients. Clin Exp Immunol. 1988 Feb;71(2):314–319. [PMC free article] [PubMed] [Google Scholar]
  35. Wardle E. N., Uldall P. R., Swinney J. S. Radio-fibrinogen catabolism studies in human renal allograft recipients. Transplantation. 1974 Dec;18(6):508–515. doi: 10.1097/00007890-197412000-00006. [DOI] [PubMed] [Google Scholar]
  36. Woodhams B. J. The simultaneous measurement of total and free protein S by ELISA. Thromb Res. 1988 Apr 1;50(1):213–220. doi: 10.1016/0049-3848(88)90189-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES