Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Jan 1;175(1):121–129. doi: 10.1084/jem.175.1.121

Distinct receptor and regulatory properties of recombinant mouse complement receptor 1 (CR1) and Crry, the two genetic homologues of human CR1

PMCID: PMC2119091  PMID: 1730912

Abstract

The relationship between the characterized mouse regulators of complement activation (RCA) genes and the 190-kD mouse complement receptor 1 (MCR1), 155-kD mouse complement receptor 2 (MCR2), and mouse p65 is unclear. One mouse RCA gene, designated MCR2 (or Cr2), encodes alternatively spliced 21 and 15 short consensus repeat (SCR)-containing transcripts that crosshybridize with cDNAs of both human CR2 and CR1, or CR2 alone, respectively. A five SCR-containing transcript derived from a second unique gene, designated Crry, also crosshybridizes with human CR1. We have previously shown that the 155-kD MCR2 is encoded by the 15 SCR-containing transcript. To analyze the protein products of the other transcripts, which are considered the genetic homologues of human CR1, we have expressed the 21 and the 5 SCR-containing cDNAs in the human K562 erythroleukemia cell line. We demonstrate that cells expressing the 21 SCR transcript express the 190-kD MCR1 protein. These cells react with five unique rat anti-MCR1 monoclonal antibodies, including the 8C12 antibody considered to be monospecific for MCR1. In addition, these cells efficiently form rosettes with mouse C3b-bearing sheep erythrocytes. In contrast, cells expressing the five SCR- containing Crry transcript are strongly recognized by an anti-human CR1 antibody that also defines the mouse p65 protein. Using a functional assay that measures the surface deposition of C3 activated via the classical complement pathway, we show that Crry/p65-expressing cells have a markedly decreased amount of C3 deposited on them as compared with control cells expressing the antisense construct or cells expressing MCR1 or MCR2. This suggests that Crry has intrinsic complement regulatory activity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aegerter-Shaw M., Cole J. L., Klickstein L. B., Wong W. W., Fearon D. T., Lalley P. A., Weis J. H. Expansion of the complement receptor gene family. Identification in the mouse of two new genes related to the CR1 and CR2 gene family. J Immunol. 1987 May 15;138(10):3488–3494. [PubMed] [Google Scholar]
  2. Ahearn J. M., Fearon D. T. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol. 1989;46:183–219. doi: 10.1016/s0065-2776(08)60654-9. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. W., Knowles B. B., Parkar M., Pym B., Stanley K., Goodfellow P. N. A human cell-surface antigen defined by a monoclonal antibody and controlled by a gene on human chromosome 1. Ann Hum Genet. 1985 Jan;49(Pt 1):31–39. doi: 10.1111/j.1469-1809.1985.tb01673.x. [DOI] [PubMed] [Google Scholar]
  4. Birmingham D. J., Cosio F. G. Characterization of the baboon erythrocyte C3b-binding protein. J Immunol. 1989 May 1;142(9):3140–3144. [PubMed] [Google Scholar]
  5. Bora N. S., Lublin D. M., Kumar B. V., Hockett R. D., Holers V. M., Atkinson J. P. Structural gene for human membrane cofactor protein (MCP) of complement maps to within 100 kb of the 3' end of the C3b/C4b receptor gene. J Exp Med. 1989 Feb 1;169(2):597–602. doi: 10.1084/jem.169.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carel J. C., Frazier B., Ley T. J., Holers V. M. Analysis of epitope expression and the functional repertoire of recombinant complement receptor 2 (CR2/CD21) in mouse and human cells. J Immunol. 1989 Aug 1;143(3):923–930. [PubMed] [Google Scholar]
  7. Carel J. C., Myones B. L., Frazier B., Holers V. M. Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. J Biol Chem. 1990 Jul 25;265(21):12293–12299. [PubMed] [Google Scholar]
  8. Carroll M. C., Alicot E. M., Katzman P. J., Klickstein L. B., Smith J. A., Fearon D. T. Organization of the genes encoding complement receptors type 1 and 2, decay-accelerating factor, and C4-binding protein in the RCA locus on human chromosome 1. J Exp Med. 1988 Apr 1;167(4):1271–1280. doi: 10.1084/jem.167.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper N. R., Moore M. D., Nemerow G. R. Immunobiology of CR2, the B lymphocyte receptor for Epstein-Barr virus and the C3d complement fragment. Annu Rev Immunol. 1988;6:85–113. doi: 10.1146/annurev.iy.06.040188.000505. [DOI] [PubMed] [Google Scholar]
  10. Dixit R., Schneider R., Law S. K., Kulczycki A., Jr, Atkinson J. P. Ligand binding specificity of a rabbit alveolar macrophage receptor for C3b. J Biol Chem. 1982 Feb 25;257(4):1595–1597. [PubMed] [Google Scholar]
  11. Fingeroth J. D., Benedict M. A., Levy D. N., Strominger J. L. Identification of murine complement receptor type 2. Proc Natl Acad Sci U S A. 1989 Jan;86(1):242–246. doi: 10.1073/pnas.86.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holers V. M., Chaplin D. D., Leykam J. F., Gruner B. A., Kumar V., Atkinson J. P. Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2459–2463. doi: 10.1073/pnas.84.8.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hourcade D., Holers V. M., Atkinson J. P. The regulators of complement activation (RCA) gene cluster. Adv Immunol. 1989;45:381–416. doi: 10.1016/s0065-2776(08)60697-5. [DOI] [PubMed] [Google Scholar]
  14. Kameyoshi Y., Matsushita M., Okada H. Murine membrane inhibitor of complement which accelerates decay of human C3 convertase. Immunology. 1989 Dec;68(4):439–444. [PMC free article] [PubMed] [Google Scholar]
  15. Kingsmore S. F., Vik D. P., Kurtz C. B., Leroy P., Tack B. F., Weis J. H., Seldin M. F. Genetic organization of complement receptor-related genes in the mouse. J Exp Med. 1989 Apr 1;169(4):1479–1484. doi: 10.1084/jem.169.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kinoshita T., Lavoie S., Nussenzweig V. Regulatory proteins for the activated third and fourth components of complement (C3b and C4b) in mice. II. Identification and properties of complement receptor type 1 (CR1). J Immunol. 1985 Apr;134(4):2564–2570. [PubMed] [Google Scholar]
  17. Kinoshita T., Takeda J., Hong K., Kozono H., Sakai H., Inoue K. Monoclonal antibodies to mouse complement receptor type 1 (CR1). Their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. J Immunol. 1988 May 1;140(9):3066–3072. [PubMed] [Google Scholar]
  18. Kinoshita T., Thyphronitis G., Tsokos G. C., Finkelman F. D., Hong K., Sakai H., Inoue K. Characterization of murine complement receptor type 2 and its immunological cross-reactivity with type 1 receptor. Int Immunol. 1990;2(7):651–659. doi: 10.1093/intimm/2.7.651. [DOI] [PubMed] [Google Scholar]
  19. Kurtz C. B., O'Toole E., Christensen S. M., Weis J. H. The murine complement receptor gene family. IV. Alternative splicing of Cr2 gene transcripts predicts two distinct gene products that share homologous domains with both human CR2 and CR1. J Immunol. 1990 May 1;144(9):3581–3591. [PubMed] [Google Scholar]
  20. Liszewski M. K., Post T. W., Atkinson J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–455. doi: 10.1146/annurev.iy.09.040191.002243. [DOI] [PubMed] [Google Scholar]
  21. Lublin D. M., Atkinson J. P. Decay-accelerating factor and membrane cofactor protein. Curr Top Microbiol Immunol. 1990;153:123–145. doi: 10.1007/978-3-642-74977-3_7. [DOI] [PubMed] [Google Scholar]
  22. Medof M. E., Iida K., Mold C., Nussenzweig V. Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J Exp Med. 1982 Dec 1;156(6):1739–1754. doi: 10.1084/jem.156.6.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Molina H., Brenner C., Jacobi S., Gorka J., Carel J. C., Kinoshita T., Holers V. M. Analysis of Epstein-Barr virus-binding sites on complement receptor 2 (CR2/CD21) using human-mouse chimeras and peptides. At least two distinct sites are necessary for ligand-receptor interaction. J Biol Chem. 1991 Jul 5;266(19):12173–12179. [PubMed] [Google Scholar]
  24. Molina H., Kinoshita T., Inoue K., Carel J. C., Holers V. M. A molecular and immunochemical characterization of mouse CR2. Evidence for a single gene model of mouse complement receptors 1 and 2. J Immunol. 1990 Nov 1;145(9):2974–2983. [PubMed] [Google Scholar]
  25. Paul M. S., Aegerter M., Cepek K., Miller M. D., Weis J. H. The murine complement receptor gene family. III. The genomic and transcriptional complexity of the Crry and Crry-ps genes. J Immunol. 1990 Mar 1;144(5):1988–1996. [PubMed] [Google Scholar]
  26. Paul M. S., Aegerter M., O'Brien S. E., Kurtz C. B., Weis J. H. The murine complement receptor gene family. Analysis of mCRY gene products and their homology to human CR1. J Immunol. 1989 Jan 15;142(2):582–589. [PubMed] [Google Scholar]
  27. Rey-Campos J., Rubinstein P., Rodriguez de Cordoba S. A physical map of the human regulator of complement activation gene cluster linking the complement genes CR1, CR2, DAF, and C4BP. J Exp Med. 1988 Feb 1;167(2):664–669. doi: 10.1084/jem.167.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schneider R. J., Kulczycki A., Jr, Law S. K., Atkinson J. P. Isolation of a biologically active macrophage receptor for the third component of complement. Nature. 1981 Apr 30;290(5809):789–792. doi: 10.1038/290789a0. [DOI] [PubMed] [Google Scholar]
  29. Shearer W. T., Atkinson J. P., Frank M. M., Parker C. W. Humoral immunostimulation. IV. Role of complement. J Exp Med. 1975 Apr 1;141(4):736–752. [PMC free article] [PubMed] [Google Scholar]
  30. Wong W. W., Fearon D. T. p65: A C3b-binding protein on murine cells that shares antigenic determinants with the human C3b receptor (CR1) and is distinct from murine C3b receptor. J Immunol. 1985 Jun;134(6):4048–4056. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES