Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Jan 1;175(1):1–7. doi: 10.1084/jem.175.1.1

Signaling by lymphocyte function-associated antigen 1 (LFA-1) in B cells: enhanced antigen presentation after stimulation through LFA-1

PMCID: PMC2119097  PMID: 1346153

Abstract

To examine the role of lymphocyte function-associated antigen 1 (LFA-1) expression on murine B cells as it pertains to their function in T cell activation, we carried out antigen-presentation assays in tissue culture wells coated with a purified, secreted form of the murine intercellular adhesion molecule 1 (ICAM-1). We observed a significant decrease in the concentration of antigen required to activate a T cell hybridoma and primary T cells in wells coated with ICAM-1. This effect was dependent on the amount of ICAM-1 used to coat the wells and was also observed in wells coated with anti-LFA-1-monoclonal antibodies and was blocked by soluble anti-LFA-1 antibodies. The effect on antigen dose was most pronounced in assays carried out with an ICAM-1-deficient mutant B lymphoma cell line, small resting primary B cells, and unfractionated primary B cells at low concentrations. No decrease in the antigen dose was observed if the B cells were chemically fixed or treated with ricin, or when antigen was presented by a HeLa cell line transfected with murine class II major histocompatibility complex (MHC) genes, indicating that the immobilized ICAM-1 was mediating its effect through B cell LFA-1, and that B cell protein synthesis was required. The enhancing effect was also observed if the B cells were prepulsed with antigen, indicating that improved uptake or processing of antigen, or increased class II MHC expression were unlikely mechanisms.

Full Text

The Full Text of this article is available as a PDF (697.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann D. M., Hogg N., Trowsdale J., Wilkinson D. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature. 1989 Apr 6;338(6215):512–514. doi: 10.1038/338512a0. [DOI] [PubMed] [Google Scholar]
  2. Carrera A. C., Rincón M., Sánchez-Madrid F., López-Botet M., de Landaźuri M. O. Triggering of co-mitogenic signals in T cell proliferation by anti-LFA-1 (CD18, CD11a), LFA-3, and CD7 monoclonal antibodies. J Immunol. 1988 Sep 15;141(6):1919–1924. [PubMed] [Google Scholar]
  3. Dang L. H., Michalek M. T., Takei F., Benaceraff B., Rock K. L. Role of ICAM-1 in antigen presentation demonstrated by ICAM-1 defective mutants. J Immunol. 1990 Jun 1;144(11):4082–4091. [PubMed] [Google Scholar]
  4. Defranco A. L., Raveche E. S., Asofsky R., Paul W. E. Frequency of B lymphocytes responsive to anti-immunoglobulin. J Exp Med. 1982 May 1;155(5):1523–1536. doi: 10.1084/jem.155.5.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  6. Justement L. B., Kreiger J., Cambier J. C. Production of multiple lymphokines by the A20.1 B cell lymphoma after cross-linking of membrane Ig by immobilized anti-Ig. J Immunol. 1989 Aug 1;143(3):881–889. [PubMed] [Google Scholar]
  7. Krensky A. M., Mentzer S. J., Clayberger C., Anderson D. C., Schmalstieg F. C., Burakoff S. J., Springer T. A. Heritable lymphocyte function-associated antigen-1 deficiency: abnormalities of cytotoxicity and proliferation associated with abnormal expression of LFA-1. J Immunol. 1985 Nov;135(5):3102–3108. [PubMed] [Google Scholar]
  8. Kuhlman P., Moy V. T., Lollo B. A., Brian A. A. The accessory function of murine intercellular adhesion molecule-1 in T lymphocyte activation. Contributions of adhesion and co-activation. J Immunol. 1991 Mar 15;146(6):1773–1782. [PubMed] [Google Scholar]
  9. Lesslauer W., Koning F., Ottenhoff T., Giphart M., Goulmy E., van Rood J. J. T90/44 (9.3 antigen). A cell surface molecule with a function in human T cell activation. Eur J Immunol. 1986 Oct;16(10):1289–1296. doi: 10.1002/eji.1830161017. [DOI] [PubMed] [Google Scholar]
  10. Linsley P. S., Clark E. A., Ledbetter J. A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5031–5035. doi: 10.1073/pnas.87.13.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miedema F., Tetteroo P. A., Terpstra F. G., Keizer G., Roos M., Weening R. S., Weemaes C. M., Roos D., Melief C. J. Immunologic studies with LFA-1- and Mo1-deficient lymphocytes from a patient with recurrent bacterial infections. J Immunol. 1985 May;134(5):3075–3081. [PubMed] [Google Scholar]
  12. Mishra G. C., Berton M. T., Oliver K. G., Krammer P. H., Uhr J. W., Vitetta E. S. A monoclonal anti-mouse LFA-1 alpha antibody mimics the biological effects of B cell stimulatory factor-1 (BSF-1). J Immunol. 1986 Sep 1;137(5):1590–1598. [PubMed] [Google Scholar]
  13. Mourad W., Geha R. S., Chatila T. Engagement of major histocompatibility complex class II molecules induces sustained, lymphocyte function-associated molecule 1-dependent cell adhesion. J Exp Med. 1990 Nov 1;172(5):1513–1516. doi: 10.1084/jem.172.5.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prieto J., Takei F., Gendelman R., Christenson B., Biberfeld P., Patarroyo M. MALA-2, mouse homologue of human adhesion molecule ICAM-1 (CD54). Eur J Immunol. 1989 Sep;19(9):1551–1557. doi: 10.1002/eji.1830190906. [DOI] [PubMed] [Google Scholar]
  15. Rothlein R., Springer T. A. The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester. J Exp Med. 1986 May 1;163(5):1132–1149. doi: 10.1084/jem.163.5.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanders V. M., Snyder J. M., Uhr J. W., Vitetta E. S. Characterization of the physical interaction between antigen-specific B and T cells. J Immunol. 1986 Oct 15;137(8):2395–2404. [PubMed] [Google Scholar]
  17. Shimonkevitz R., Colon S., Kappler J. W., Marrack P., Grey H. M. Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. J Immunol. 1984 Oct;133(4):2067–2074. [PubMed] [Google Scholar]
  18. Siu G., Hedrick S. M., Brian A. A. Isolation of the murine intercellular adhesion molecule 1 (ICAM-1) gene. ICAM-1 enhances antigen-specific T cell activation. J Immunol. 1989 Dec 1;143(11):3813–3820. [PubMed] [Google Scholar]
  19. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  20. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  21. Van Seventer G. A., Shimizu Y., Horgan K. J., Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol. 1990 Jun 15;144(12):4579–4586. [PubMed] [Google Scholar]
  22. White J., Herman A., Pullen A. M., Kubo R., Kappler J. W., Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. doi: 10.1016/0092-8674(89)90980-x. [DOI] [PubMed] [Google Scholar]
  23. van Kooyk Y., van de Wiel-van Kemenade P., Weder P., Kuijpers T. W., Figdor C. G. Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature. 1989 Dec 14;342(6251):811–813. doi: 10.1038/342811a0. [DOI] [PubMed] [Google Scholar]
  24. van Noesel C., Miedema F., Brouwer M., de Rie M. A., Aarden L. A., van Lier R. A. Regulatory properties of LFA-1 alpha and beta chains in human T-lymphocyte activation. Nature. 1988 Jun 30;333(6176):850–852. doi: 10.1038/333850a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES