Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Feb 1;175(2):377–385. doi: 10.1084/jem.175.2.377

Profilins constitute a novel family of functional plant pan-allergens

PMCID: PMC2119109  PMID: 1370681

Abstract

Type I allergy is a major health problem in industrialized countries where up to 15% of the population suffer from allergic symptoms (rhinitis, conjunctivitis, and asthma). Previously, we identified a cDNA clone that encoded a birch pollen allergen as profilin. Profilins constitute a ubiquitous family of proteins that control actin polymerization in eukaryotic cells; in particular, profilin participates in the acrosomal reaction of animal sperm cells. Although profilins had been unknown in plants so far, our finding led to the assumption that profilins might have similar functions in pollens during plant fertilization and therefore represent allergenic components in almost all pollens. We show that profilins are prominent allergens that can be isolated from tree pollens (Betula verrucosa, birch), from pollens of grasses (Phleum pratense, timothy grass), and weeds (Artemisia vulgaris, mugwort). About 20% of all pollen allergic patients tested (n = 65) displayed immunoglobulin E (IgE) reactivity to recombinant birch profilin that was expressed in pKK223-3. An IgE inhibition experiment performed with recombinant birch profilin and purified natural profilins from timothy grass and mugwort indicates common IgE epitopes. Moreover, all pollen profilins purified from these far distantly related plant species, and likewise the purified recombinant birch profilin, are able to elicit dose-dependent histamine release via high affinity Fc epsilon receptor of blood basophils from profilin allergic patients. The presence of profilin and possibly related proteins as crossreacting allergenic components in various plants therefore provides an explanation as to why certain allergic patients display type I allergic reactions with pollens and even food from distantly related plants. A functional pan-allergen, like profilin, available as purified recombinant protein, may be a useful diagnostic and probably therapeutic reagent.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983 Nov;25(2-3):167–178. doi: 10.1016/0378-1119(83)90222-6. [DOI] [PubMed] [Google Scholar]
  2. Ampe C., Vandekerckhove J., Brenner S. L., Tobacman L., Korn E. D. The amino acid sequence of Acanthamoeba profilin. J Biol Chem. 1985 Jan 25;260(2):834–840. [PubMed] [Google Scholar]
  3. Breiteneder H., Pettenburger K., Bito A., Valenta R., Kraft D., Rumpold H., Scheiner O., Breitenbach M. The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 1989 Jul;8(7):1935–1938. doi: 10.1002/j.1460-2075.1989.tb03597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chua K. Y., Stewart G. A., Thomas W. R., Simpson R. J., Dilworth R. J., Plozza T. M., Turner K. J. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J Exp Med. 1988 Jan 1;167(1):175–182. doi: 10.1084/jem.167.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ebner C., Birkner T., Valenta R., Rumpold H., Breitenbach M., Scheiner O., Kraft D. Common epitopes of birch pollen and apples--studies by western and northern blot. J Allergy Clin Immunol. 1991 Oct;88(4):588–594. doi: 10.1016/0091-6749(91)90152-e. [DOI] [PubMed] [Google Scholar]
  6. Ford S. A., Baldo B. A. A re-examination of ryegrass (Lolium perenne) pollen allergens. Int Arch Allergy Appl Immunol. 1986;81(3):193–203. doi: 10.1159/000234134. [DOI] [PubMed] [Google Scholar]
  7. Goldschmidt-Clermont P. J., Machesky L. M., Baldassare J. J., Pollard T. D. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science. 1990 Mar 30;247(4950):1575–1578. doi: 10.1126/science.2157283. [DOI] [PubMed] [Google Scholar]
  8. Isenberg G., Aebi U., Pollard T. D. An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature. 1980 Dec 4;288(5790):455–459. doi: 10.1038/288455a0. [DOI] [PubMed] [Google Scholar]
  9. Jarolim E., Rumpold H., Endler A. T., Ebner H., Breitenbach M., Scheiner O., Kraft D. IgE and IgG antibodies of patients with allergy to birch pollen as tools to define the allergen profile of Betula verrucosa. Allergy. 1989 Aug;44(6):385–395. doi: 10.1111/j.1398-9995.1989.tb04169.x. [DOI] [PubMed] [Google Scholar]
  10. Kwiatkowski D. J., Bruns G. A. Human profilin. Molecular cloning, sequence comparison, and chromosomal analysis. J Biol Chem. 1988 Apr 25;263(12):5910–5915. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Laver W. G., Air G. M., Webster R. G., Smith-Gill S. J. Epitopes on protein antigens: misconceptions and realities. Cell. 1990 May 18;61(4):553–556. doi: 10.1016/0092-8674(90)90464-p. [DOI] [PubMed] [Google Scholar]
  13. Lind S. E., Janmey P. A., Chaponnier C., Herbert T. J., Stossel T. P. Reversible binding of actin to gelsolin and profilin in human platelet extracts. J Cell Biol. 1987 Aug;105(2):833–842. doi: 10.1083/jcb.105.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindberg U., Schutt C. E., Hellsten E., Tjäder A. C., Hult T. The use of poly(L-proline)-Sepharose in the isolation of profilin and profilactin complexes. Biochim Biophys Acta. 1988 Dec 15;967(3):391–400. doi: 10.1016/0304-4165(88)90102-x. [DOI] [PubMed] [Google Scholar]
  15. Magdolen V., Oechsner U., Müller G., Bandlow W. The intron-containing gene for yeast profilin (PFY) encodes a vital function. Mol Cell Biol. 1988 Dec;8(12):5108–5115. doi: 10.1128/mcb.8.12.5108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rafnar T., Griffith I. J., Kuo M. C., Bond J. F., Rogers B. L., Klapper D. G. Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem. 1991 Jan 15;266(2):1229–1236. [PubMed] [Google Scholar]
  17. Singh M. B., Hough T., Theerakulpisut P., Avjioglu A., Davies S., Smith P. M., Taylor P., Simpson R. J., Ward L. D., McCluskey J. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: intracellular targeting to the amyloplast. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1384–1388. doi: 10.1073/pnas.88.4.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takagi T., Mabuchi I., Hosoya H., Furuhashi K., Hatano S. Primary structure of profilins from two species of Echinoidea and Physarum polycephalum. Eur J Biochem. 1990 Sep 24;192(3):777–781. doi: 10.1111/j.1432-1033.1990.tb19289.x. [DOI] [PubMed] [Google Scholar]
  19. Tilney L. G., Bonder E. M., Coluccio L. M., Mooseker M. S. Actin from Thyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin. J Cell Biol. 1983 Jul;97(1):112–124. doi: 10.1083/jcb.97.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Valent P., Besemer J., Muhm M., Majdic O., Lechner K., Bettelheim P. Interleukin 3 activates human blood basophils via high-affinity binding sites. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5542–5546. doi: 10.1073/pnas.86.14.5542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Valenta R., Breiteneder H., Petternburger K., Breitenbach M., Rumpold H., Kraft D., Scheiner O. Homology of the major birch-pollen allergen, Bet v I, with the major pollen allergens of alder, hazel, and hornbeam at the nucleic acid level as determined by cross-hybridization. J Allergy Clin Immunol. 1991 Mar;87(3):677–682. doi: 10.1016/0091-6749(91)90388-5. [DOI] [PubMed] [Google Scholar]
  23. Valenta R., Duchêne M., Pettenburger K., Sillaber C., Valent P., Bettelheim P., Breitenbach M., Rumpold H., Kraft D., Scheiner O. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science. 1991 Aug 2;253(5019):557–560. doi: 10.1126/science.1857985. [DOI] [PubMed] [Google Scholar]
  24. Vojtek A., Haarer B., Field J., Gerst J., Pollard T. D., Brown S., Wigler M. Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell. 1991 Aug 9;66(3):497–505. doi: 10.1016/0092-8674(81)90013-1. [DOI] [PubMed] [Google Scholar]
  25. Widada J. S., Ferraz C., Liautard J. P. Total coding sequence of profilin cDNA from Mus musculus macrophage. Nucleic Acids Res. 1989 Apr 11;17(7):2855–2855. doi: 10.1093/nar/17.7.2855. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES