Abstract
Dendritic cells (DC), in general, and pulmonary DC, in particular, are a heterogeneous population of cells, their phenotype and function being dependent on their anatomic location, their state of activation, and the regulatory effect of locally secreted cytokines. Using a novel microdissection technique, the epithelium from the trachea and entire airway system was harvested, and the contained DC isolated at greater than 90% purity. The phenotype and function of these airway DC (ADC) was compared to DC isolated, at greater than 90% purity, from the parenchyma of the same lung. In contrast to lung DC (LDC), ADC did not express intercellular adhesion molecule 1 (ICAM-1) in situ, the amount of immune associated antigen (Ia) expressed was less (as determined by immunoperoxidase staining and immunopanning), and greater than 50% of ADC displayed Fc receptors (FcR). The majority of LDC were ICAM-1+, less than 5% expressed FcR, and all were intensely Ia+. Airway DC were most numerous in tracheal epithelium, but they were also present in small numbers in the epithelium of the most distal airways. Their numbers increased in all segments of the tracheobronchial epithelium in response to the administration of IFN-gamma. ADC were consistently more effective than LDC in presenting soluble (hen egg lysozyme) and particulate (heat-killed Listeria monocytogenes) antigens to antigen- sensitized T cells. By contrast, LDC were significantly more efficient in stimulating the proliferation of nonsensitized T cells in an autologous mixed leukocyte reaction. These data suggest that in normal animals, intraepithelial DC of airways share many attributes with Langerhans cells of the skin. Interstitial LDC, by contrast, reside in an environment where they may be exposed to a different set of regulatory factors and where they have progressed to a more advanced stage of differentiation than ADC. Both groups of DC are, however, heterogeneous, reflecting the continuous turnover that these cells undergo in the lung.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austyn J. M. Lymphoid dendritic cells. Immunology. 1987 Oct;62(2):161–170. [PMC free article] [PubMed] [Google Scholar]
- Bignon J., Jaurand M. C., Pinchon M. C., Sapin C., Warnet J. M. Immunoelectron microscopic and immunochemical demonstrations of serum proteins in the alveolar lining material of the rat lung. Am Rev Respir Dis. 1976 Feb;113(2):109–120. doi: 10.1164/arrd.1976.113.2.109. [DOI] [PubMed] [Google Scholar]
- Bowers W. E., Berkowitz M. R. Differentiation of dendritic cells in cultures of rat bone marrow cells. J Exp Med. 1986 Apr 1;163(4):872–883. doi: 10.1084/jem.163.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart D. N., Fabre J. W. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med. 1981 Aug 1;154(2):347–361. doi: 10.1084/jem.154.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt P. G., Schon-Hegrad M. A. Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: implications for immune function studies. Immunology. 1987 Nov;62(3):349–356. [PMC free article] [PubMed] [Google Scholar]
- Koch F., Heufler C., Kämpgen E., Schneeweiss D., Böck G., Schuler G. Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. J Exp Med. 1990 Jan 1;171(1):159–171. doi: 10.1084/jem.171.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kradin R. L., McCarthy K. M., Schneeberger E. E. Opsonic receptor function is reduced on the surface of newborn alveolar macrophages. Am Rev Respir Dis. 1986 Feb;133(2):238–244. doi: 10.1164/arrd.1986.133.2.238. [DOI] [PubMed] [Google Scholar]
- Kradin R. L., McCarthy K. M., Xia W. J., Lazarus D., Schneeberger E. E. Accessory cells of the lung. I. Interferon-gamma increases Ia+ dendritic cells in the lung without augmenting their accessory activities. Am J Respir Cell Mol Biol. 1991 Mar;4(3):210–218. doi: 10.1165/ajrcmb/4.3.210. [DOI] [PubMed] [Google Scholar]
- Larsen C. P., Morris P. J., Austyn J. M. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med. 1990 Jan 1;171(1):307–314. doi: 10.1084/jem.171.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacPherson G. G. Properties of lymph-borne (veiled) dendritic cells in culture. I. Modulation of phenotype, survival and function: partial dependence on GM-CSF. Immunology. 1989 Sep;68(1):102–107. [PMC free article] [PubMed] [Google Scholar]
- McCarthy K. M., Gong J. L., Telford J. R., Schneeberger E. E. Ontogeny of Ia+ accessory cells in fetal and newborn rat lung. Am J Respir Cell Mol Biol. 1992 Mar;6(3):349–356. doi: 10.1165/ajrcmb/6.3.349. [DOI] [PubMed] [Google Scholar]
- McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
- McMaster W. R., Williams A. F. Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol. 1979 Jun;9(6):426–433. doi: 10.1002/eji.1830090603. [DOI] [PubMed] [Google Scholar]
- Metlay J. P., Puré E., Steinman R. M. Control of the immune response at the level of antigen-presenting cells: a comparison of the function of dendritic cells and B lymphocytes. Adv Immunol. 1989;47:45–116. doi: 10.1016/s0065-2776(08)60662-8. [DOI] [PubMed] [Google Scholar]
- Plopper C. G., Chang A. M., Pang A., Buckpitt A. R. Use of microdissected airways to define metabolism and cytotoxicity in murine bronchiolar epithelium. Exp Lung Res. 1991 Mar-Apr;17(2):197–212. doi: 10.3109/01902149109064411. [DOI] [PubMed] [Google Scholar]
- Pollard A. M., Lipscomb M. F. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells. J Exp Med. 1990 Jul 1;172(1):159–167. doi: 10.1084/jem.172.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson A. P., White T. M., Mason D. W. MRC OX-43: a monoclonal antibody which reacts with all vascular endothelium in the rat except that of brain capillaries. Immunology. 1986 Feb;57(2):231–237. [PMC free article] [PubMed] [Google Scholar]
- Robinson A. P., White T. M., Mason D. W. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology. 1986 Feb;57(2):239–247. [PMC free article] [PubMed] [Google Scholar]
- Rochester C. L., Goodell E. M., Stoltenborg J. K., Bowers W. E. Dendritic cells from rat lung are potent accessory cells. Am Rev Respir Dis. 1988 Jul;138(1):121–128. doi: 10.1164/ajrccm/138.1.121. [DOI] [PubMed] [Google Scholar]
- Schneeberger E. E., DeFerrari M., Skoskiewicz M. J., Russell P. S., Colvin R. B. Induction of MHC-determined antigens in the lung by interferon-gamma. Lab Invest. 1986 Aug;55(2):138–144. [PubMed] [Google Scholar]
- Schon-Hegrad M. A., Oliver J., McMenamin P. G., Holt P. G. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med. 1991 Jun 1;173(6):1345–1356. doi: 10.1084/jem.173.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuler G., Steinman R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985 Mar 1;161(3):526–546. doi: 10.1084/jem.161.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sertl K., Takemura T., Tschachler E., Ferrans V. J., Kaliner M. A., Shevach E. M. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med. 1986 Feb 1;163(2):436–451. doi: 10.1084/jem.163.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sleigh M. A., Blake J. R., Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988 Mar;137(3):726–741. doi: 10.1164/ajrccm/137.3.726. [DOI] [PubMed] [Google Scholar]
- Spickett G. P., Brandon M. R., Mason D. W., Williams A. F., Woollett G. R. MRC OX-22, a monoclonal antibody that labels a new subset of T lymphocytes and reacts with the high molecular weight form of the leukocyte-common antigen. J Exp Med. 1983 Sep 1;158(3):795–810. doi: 10.1084/jem.158.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
- Springer T. A. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Annu Rev Cell Biol. 1990;6:359–402. doi: 10.1146/annurev.cb.06.110190.002043. [DOI] [PubMed] [Google Scholar]
- Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973 May 1;137(5):1142–1162. doi: 10.1084/jem.137.5.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
- Streilein J. W., Grammer S. F. In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes. J Immunol. 1989 Dec 15;143(12):3925–3933. [PubMed] [Google Scholar]
- Streilein J. W., Grammer S. F., Yoshikawa T., Demidem A., Vermeer M. Functional dichotomy between Langerhans cells that present antigen to naive and to memory/effector T lymphocytes. Immunol Rev. 1990 Oct;117:159–183. doi: 10.1111/j.1600-065x.1990.tb00572.x. [DOI] [PubMed] [Google Scholar]
- Sunderland C. A., McMaster W. R., Williams A. F. Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. Eur J Immunol. 1979 Feb;9(2):155–159. doi: 10.1002/eji.1830090212. [DOI] [PubMed] [Google Scholar]
- Tamatani T., Kotani M., Miyasaka M. Characterization of the rat leukocyte integrin, CD11/CD18, by the use of LFA-1 subunit-specific monoclonal antibodies. Eur J Immunol. 1991 Mar;21(3):627–633. doi: 10.1002/eji.1830210314. [DOI] [PubMed] [Google Scholar]
- White R. A., Mason D. W., Williams A. F., Galfre G., Milstein C. T-lymphocyte heterogeneity in the rat: separation of functional subpopulations using a monoclonal antibody. J Exp Med. 1978 Sep 1;148(3):664–673. doi: 10.1084/jem.148.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witmer-Pack M. D., Olivier W., Valinsky J., Schuler G., Steinman R. M. Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med. 1987 Nov 1;166(5):1484–1498. doi: 10.1084/jem.166.5.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia W. J., Schneeberger E. E., McCarthy K., Kradin R. L. Accessory cells of the lung. II. Ia+ pulmonary dendritic cells display cell surface antigen heterogeneity. Am J Respir Cell Mol Biol. 1991 Sep;5(3):276–283. doi: 10.1165/ajrcmb/5.3.276. [DOI] [PubMed] [Google Scholar]
- Yamin M., Lazarus D., Schneeberger E. E., McCarthy K., Xia W. J., Kradin R. Anti-RMA: a murine monoclonal antibody that activates rat macrophages. I. Distribution and characterization of the RMA antigen. Am J Respir Cell Mol Biol. 1990 Feb;2(2):207–215. doi: 10.1165/ajrcmb/2.2.207. [DOI] [PubMed] [Google Scholar]