Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Apr 1;175(4):925–932. doi: 10.1084/jem.175.4.925

Species-specific binding of CD4 to the beta 2 domain of major histocompatibility complex class II molecules

PMCID: PMC2119163  PMID: 1552288

Abstract

Exon-shuffled constructs between mouse (IA beta b) and human (DR3 beta) class II beta chains were made to study the interaction sites between CD4 and major histocompatibility complex (MHC) class II molecules, and to determine whether a species barrier is involved. The overall structure and the peptide binding groove appeared to be unaffected by the exon shuffling procedure as determined by monoclonal antibody and peptide binding assays, respectively. While purified CD4+ BALB/c T cells responded strongly in a mixed leukocyte reaction to transfectants expressing the whole IA molecule, the response to IA molecules containing a DR beta 2 domain was substantially reduced. In addition, the presence of an IA beta 2 domain in DR failed to restore the weak xenoreactivity to the whole DR molecule. Similar observations were made with murine HEL-specific, IA alpha k beta b-restricted T cell hybridomas which responded significantly stronger to the whole compared with the exon-shuffled IA molecules. The involvement of CD4 in these differential responses was confirmed by the observation that CD4 loss variants responded to both molecules comparably, and transfection of CD4 into these cells restored the parental phenotype. In contrast, CD4 loss variants transfected with human CD4 responded equally to both the whole and the exon-shuffled molecules. Taken together, these data imply the existence of a partial species barrier, and suggest that CD4 interacts with the beta 2 domain of MHC class II molecules, probably in addition to other contact sites. Models for the interaction of CD4 with MHC class II molecules are presented.

Full Text

The Full Text of this article is available as a PDF (854.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Blue M. L., Schlossman S. F. Comodulation of CD3 and CD4. Evidence for a specific association between CD4 and approximately 5% of the CD3:T cell receptor complexes on helper T lymphocytes. J Immunol. 1988 Mar 15;140(6):1732–1737. [PubMed] [Google Scholar]
  2. Biddison W. E., Rao P. E., Talle M. A., Goldstein G., Shaw S. Possible involvement of the OKT4 molecule in T cell recognition of class II HLA antigens. Evidence from studies of cytotoxic T lymphocytes specific for SB antigens. J Exp Med. 1982 Oct 1;156(4):1065–1076. doi: 10.1084/jem.156.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clayton L. K., Sieh M., Pious D. A., Reinherz E. L. Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding. Nature. 1989 Jun 15;339(6225):548–551. doi: 10.1038/339548a0. [DOI] [PubMed] [Google Scholar]
  4. Doyle C., Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature. 1987 Nov 19;330(6145):256–259. doi: 10.1038/330256a0. [DOI] [PubMed] [Google Scholar]
  5. Golding H., McCluskey J., Munitz T. I., Germain R. N., Margulies D. H., Singer A. T-cell recognition of a chimaeric class II/class I MHC molecule and the role of L3T4. Nature. 1985 Oct 3;317(6036):425–427. doi: 10.1038/317425a0. [DOI] [PubMed] [Google Scholar]
  6. Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hämmerling G. J., Hämmerling U., Flaherty L. Qat-4 and Qat-5, new murine T-cell antigens governed by the Tla region and identified by monoclonal antibodies. J Exp Med. 1979 Jul 1;150(1):108–116. doi: 10.1084/jem.150.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janeway C. A., Jr The role of CD4 in T-cell activation: accessory molecule or co-receptor? Immunol Today. 1989 Jul;10(7):234–238. doi: 10.1016/0167-5699(89)90260-0. [DOI] [PubMed] [Google Scholar]
  9. Kent S. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1988;57:957–989. doi: 10.1146/annurev.bi.57.070188.004521. [DOI] [PubMed] [Google Scholar]
  10. Koch N., Hämmerling G. J., Tada N., Kimura S., Hämmerling U. Cross-blocking studies with monoclonal antibodies against I-A molecules of haplotypes b, d and k. Eur J Immunol. 1982 Nov;12(11):909–914. doi: 10.1002/eji.1830121103. [DOI] [PubMed] [Google Scholar]
  11. Kruisbeek A. M., Mond J. J., Fowlkes B. J., Carmen J. A., Bridges S., Longo D. L. Absence of the Lyt-2-,L3T4+ lineage of T cells in mice treated neonatally with anti-I-A correlates with absence of intrathymic I-A-bearing antigen-presenting cell function. J Exp Med. 1985 May 1;161(5):1029–1047. doi: 10.1084/jem.161.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamarre D., Ashkenazi A., Fleury S., Smith D. H., Sekaly R. P., Capon D. J. The MHC-binding and gp120-binding functions of CD4 are separable. Science. 1989 Aug 18;245(4919):743–746. doi: 10.1126/science.2549633. [DOI] [PubMed] [Google Scholar]
  13. Lampson L. A., Levy R. Two populations of Ia-like molecules on a human B cell line. J Immunol. 1980 Jul;125(1):293–299. [PubMed] [Google Scholar]
  14. Landias D., Beck B. N., Buerstedde J. M., Degraw S., Klein D., Koch N., Murphy D., Pierres M., Tada T., Yamamoto K. The assignment of chain specificities for anti-Ia monoclonal antibodies using L cell transfectants. J Immunol. 1986 Nov 1;137(9):3002–3005. [PubMed] [Google Scholar]
  15. Lawrance S. K., Karlsson L., Price J., Quaranta V., Ron Y., Sprent J., Peterson P. A. Transgenic HLA-DR alpha faithfully reconstitutes IE-controlled immune functions and induces cross-tolerance to E alpha in E alpha 0 mutant mice. Cell. 1989 Aug 11;58(3):583–594. doi: 10.1016/0092-8674(89)90439-x. [DOI] [PubMed] [Google Scholar]
  16. Lechler R. I. Structure-function relationships of MHC class II molecules. Immunol Suppl. 1988;1:25–26. [PubMed] [Google Scholar]
  17. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  18. Lemke H., Hämmerling G. J., Hämmerling U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol Rev. 1979;47:175–206. doi: 10.1111/j.1600-065x.1979.tb00293.x. [DOI] [PubMed] [Google Scholar]
  19. Marrack P., Endres R., Shimonkevitz R., Zlotnik A., Dialynas D., Fitch F., Kappler J. The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med. 1983 Oct 1;158(4):1077–1091. doi: 10.1084/jem.158.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mazerolles F., Durandy A., Piatier-Tonneau D., Charron D., Montagnier L., Auffray C., Fischer A. Immunosuppressive properties of synthetic peptides derived from CD4 and HLA-DR antigens. Cell. 1988 Nov 4;55(3):497–504. doi: 10.1016/0092-8674(88)90036-0. [DOI] [PubMed] [Google Scholar]
  21. Meuer S. C., Schlossman S. F., Reinherz E. L. Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4395–4399. doi: 10.1073/pnas.79.14.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Momburg F., Koch N., Möller P., Moldenhauer G., Butcher G. W., Hämmerling G. J. Differential expression of Ia and Ia-associated invariant chain in mouse tissues after in vivo treatment with IFN-gamma. J Immunol. 1986 Feb 1;136(3):940–948. [PubMed] [Google Scholar]
  23. Moreno J., Adorini L., Hämmerling G. J. Co-dominant restriction by a mixed-haplotype I-A molecule (alpha k beta b) for the lysozyme peptide 52-61 in H-2k x H-2b F1 mice. J Immunol. 1990 May 1;144(9):3296–3304. [PubMed] [Google Scholar]
  24. Moreno J., Vignali D. A., Nadimi F., Fuchs S., Adorini L., Hämmerling G. J. Processing of an endogenous protein can generate MHC class II-restricted T cell determinants distinct from those derived from exogenous antigen. J Immunol. 1991 Nov 15;147(10):3306–3313. [PubMed] [Google Scholar]
  25. Nishimura Y., Iwanaga T., Inamitsu T., Yanagawa Y., Yasunami M., Kimura A., Hirokawa K., Sasazuki T. Expression of the human MHC, HLA-DQW6 genes alters the immune response in C57BL/6 mice. J Immunol. 1990 Jul 1;145(1):353–360. [PubMed] [Google Scholar]
  26. Swain S. L., Dialynas D. P., Fitch F. W., English M. Monoclonal antibody to L3T4 blocks the function of T cells specific for class 2 major histocompatibility complex antigens. J Immunol. 1984 Mar;132(3):1118–1123. [PubMed] [Google Scholar]
  27. Swain S. L. T cell subsets and the recognition of MHC class. Immunol Rev. 1983;74:129–142. doi: 10.1111/j.1600-065x.1983.tb01087.x. [DOI] [PubMed] [Google Scholar]
  28. Zhou P., Anderson G. D., Savarirayan S., Inoko H., David C. S. Thymic deletion of V beta 11+, V beta 5+ T cells in H-2E negative, HLA-DQ beta+ single transgenic mice. J Immunol. 1991 Feb 1;146(3):854–859. [PubMed] [Google Scholar]
  29. von Hoegen P., Miceli M. C., Tourvieille B., Schilham M., Parnes J. R. Equivalence of human and mouse CD4 in enhancing antigen responses by a mouse class II-restricted T cell hybridoma. J Exp Med. 1989 Dec 1;170(6):1879–1886. doi: 10.1084/jem.170.6.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES