Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Apr 1;175(4):1055–1066. doi: 10.1084/jem.175.4.1055

Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins

PMCID: PMC2119193  PMID: 1372642

Abstract

Natural killer (NK) cells have been defined as CD3 epsilon-, CD16+ and/or CD56+ lymphocytes that mediate major histocompatibility complex (MHC)-unrestricted cytotoxicity against certain tumors and virus- infected cells. Unlike T lymphocytes, NK cells do not rearrange or productively express T cell antigen receptor genes. Moreover, NK cells from adults have been reported to not express CD3 gamma, delta, or epsilon proteins on the cell surface or in the cytoplasm. Nonetheless, NK cells have been shown to share a number of antigenic and functional similarities to T cells that suggest the possibility of common origins. In this report, we demonstrate that functional NK cells exist in liver at early stages of human embryonic development. Freshly isolated fetal NK cells mediated MHC-unrestricted cytotoxicity against NK-sensitive targets and acquired the ability to lyse NK-resistant tumors after overnight culture in interleukin 2. Unlike adult NK cells, freshly isolated fetal liver NK cells and clones derived from these cells, as well as a subset of cord blood NK cells, express substantial levels of CD3 delta and CD3 epsilon proteins in the cytoplasm. Expression of CD3 epsilon and CD3 delta transcripts and cytoplasmic proteins in fetal NK clones was confirmed by polymerase chain reaction and Western blot analysis. These findings support the concept that NK and T cells may arise from a common progenitor that expresses components of the CD3 complex. Alternatively, it is possible that the cytoplasmic CD3 delta, epsilon+ fetal NK cells represent a distinct subpopulation of NK cells that is predominant in the fetus, but replaced by the cytoplasmic CD3 delta,epsilon- adult NK cell population after embryogenesis.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Miller C. A., Balch C. M. Characterization of human granular lymphocyte subpopulations expressing HNK-1 (Leu-7) and Leu-11 antigens in the blood and lymphoid tissues from fetuses, neonates and adults. Eur J Immunol. 1984 Jul;14(7):616–623. doi: 10.1002/eji.1830140707. [DOI] [PubMed] [Google Scholar]
  2. Anderson P., Blue M. L., O'Brien C., Schlossman S. F. Monoclonal antibodies reactive with the T cell receptor zeta chain: production and characterization using a new method. J Immunol. 1989 Sep 15;143(6):1899–1904. [PubMed] [Google Scholar]
  3. Anderson P., Caligiuri M., O'Brien C., Manley T., Ritz J., Schlossman S. F. Fc gamma receptor type III (CD16) is included in the zeta NK receptor complex expressed by human natural killer cells. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2274–2278. doi: 10.1073/pnas.87.6.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson P., Caligiuri M., Ritz J., Schlossman S. F. CD3-negative natural killer cells express zeta TCR as part of a novel molecular complex. Nature. 1989 Sep 14;341(6238):159–162. doi: 10.1038/341159a0. [DOI] [PubMed] [Google Scholar]
  5. Andrews R. G., Singer J. W., Bernstein I. D. Human hematopoietic precursors in long-term culture: single CD34+ cells that lack detectable T cell, B cell, and myeloid cell antigens produce multiple colony-forming cells when cultured with marrow stromal cells. J Exp Med. 1990 Jul 1;172(1):355–358. doi: 10.1084/jem.172.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bender J. G., Unverzagt K. L., Walker D. E., Lee W., Van Epps D. E., Smith D. H., Stewart C. C., To L. B. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood. 1991 Jun 15;77(12):2591–2596. [PubMed] [Google Scholar]
  7. Biassoni R., Ferrini S., Prigione I., Moretta A., Long E. O. CD3-negative lymphokine-activated cytotoxic cells express the CD3 epsilon gene. J Immunol. 1988 Mar 1;140(5):1685–1689. [PubMed] [Google Scholar]
  8. Biron C. A., van den Elsen P., Tutt M. M., Medveczky P., Kumar V., Terhorst C. Murine natural killer cells stimulated in vivo do not express the T cell receptor alpha, beta, gamma, T3 delta, or T3 epsilon genes. J Immunol. 1987 Sep 1;139(5):1704–1710. [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Hackett J., Jr, Bosma G. C., Bosma M. J., Bennett M., Kumar V. Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc Natl Acad Sci U S A. 1986 May;83(10):3427–3431. doi: 10.1073/pnas.83.10.3427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Havran W. L., Allison J. P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature. 1988 Sep 29;335(6189):443–445. doi: 10.1038/335443a0. [DOI] [PubMed] [Google Scholar]
  12. Haynes B. F., Martin M. E., Kay H. H., Kurtzberg J. Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med. 1988 Sep 1;168(3):1061–1080. doi: 10.1084/jem.168.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hori T., Cupp J., Wrighton N., Lee F., Spits H. Identification of a novel human thymocyte subset with a phenotype of CD3- CD4+ CD8 alpha + beta-1. Possible progeny of the CD3- CD4- CD8- subset. J Immunol. 1991 Jun 15;146(12):4078–4084. [PubMed] [Google Scholar]
  14. Hori T., de Waal Malefyt R., Duncan B. W., Harrison M. R., Roncarolo M. G., Spits H. Cloning of a novel cell type from human fetal liver expressing cytoplasmic CD3 delta and epsilon but not membrane CD3. Int Immunol. 1991 Apr;3(4):353–357. doi: 10.1093/intimm/3.4.353. [DOI] [PubMed] [Google Scholar]
  15. Krangel M. S., Yssel H., Brocklehurst C., Spits H. A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J Exp Med. 1990 Sep 1;172(3):847–859. doi: 10.1084/jem.172.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lanier L. L., Cwirla S., Federspiel N., Phillips J. H. Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor beta chain genes. J Exp Med. 1986 Jan 1;163(1):209–214. doi: 10.1084/jem.163.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lanier L. L., Cwirla S., Phillips J. H. Genomic organization of T cell gamma genes in human peripheral blood natural killer cells. J Immunol. 1986 Dec 1;137(11):3375–3377. [PubMed] [Google Scholar]
  19. Lanier L. L., Federspiel N. A., Ruitenberg J. J., Phillips J. H., Allison J. P., Littman D., Weiss A. The T cell antigen receptor complex expressed on normal peripheral blood CD4-, CD8- T lymphocytes. A CD3-associated disulfide-linked gamma chain heterodimer. J Exp Med. 1987 Apr 1;165(4):1076–1094. doi: 10.1084/jem.165.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lanier L. L., Le A. M., Civin C. I., Loken M. R., Phillips J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986 Jun 15;136(12):4480–4486. [PubMed] [Google Scholar]
  21. Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
  22. Lanier L. L., Phillips J. H., Hackett J., Jr, Tutt M., Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986 Nov 1;137(9):2735–2739. [PubMed] [Google Scholar]
  23. Lanier L. L., Yu G., Phillips J. H. Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature. 1989 Dec 14;342(6251):803–805. doi: 10.1038/342803a0. [DOI] [PubMed] [Google Scholar]
  24. Lefranc M. P., Forster A., Rabbitts T. H. Rearrangement of two distinct T-cell gamma-chain variable-region genes in human DNA. 1986 Jan 30-Feb 5Nature. 319(6052):420–422. doi: 10.1038/319420a0. [DOI] [PubMed] [Google Scholar]
  25. Loh E. Y., Cwirla S., Serafini A. T., Phillips J. H., Lanier L. L. Human T-cell-receptor delta chain: genomic organization, diversity, and expression in populations of cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9714–9718. doi: 10.1073/pnas.85.24.9714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989 Nov 15;143(10):3183–3191. [PubMed] [Google Scholar]
  27. Pessano S., Oettgen H., Bhan A. K., Terhorst C. The T3/T cell receptor complex: antigenic distinction between the two 20-kd T3 (T3-delta and T3-epsilon) subunits. EMBO J. 1985 Feb;4(2):337–344. doi: 10.1002/j.1460-2075.1985.tb03634.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takeshita T., Goto Y., Tada K., Nagata K., Asao H., Sugamura K. Monoclonal antibody defining a molecule possibly identical to the p75 subunit of interleukin 2 receptor. J Exp Med. 1989 Apr 1;169(4):1323–1332. doi: 10.1084/jem.169.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toyonaga B., Yoshikai Y., Vadasz V., Chin B., Mak T. W. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8624–8628. doi: 10.1073/pnas.82.24.8624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tutt M. M., Kuziel W. A., Hackett J., Jr, Bennett M., Tucker P. W., Kumar V. Murine natural killer cells do not express functional transcripts of the alpha-, beta-, or gamma-chain genes of the T cell receptor. J Immunol. 1986 Nov 1;137(9):2998–3001. [PubMed] [Google Scholar]
  33. Tutt M. M., Schuler W., Kuziel W. A., Tucker P. W., Bennett M., Bosma M. J., Kumar V. T cell receptor genes do not rearrange or express functional transcripts in natural killer cells of scid mice. J Immunol. 1987 Apr 1;138(7):2338–2344. [PubMed] [Google Scholar]
  34. Ueno Y., Miyawaki T., Seki H., Matsuda A., Taga K., Sato H., Taniguchi N. Differential effects of recombinant human interferon-gamma and interleukin 2 on natural killer cell activity of peripheral blood in early human development. J Immunol. 1985 Jul;135(1):180–184. [PubMed] [Google Scholar]
  35. Uksila J., Lassila O., Hirvonen T., Toivanen P. Development of natural killer cell function in the human fetus. J Immunol. 1983 Jan;130(1):153–156. [PubMed] [Google Scholar]
  36. Uksila J., Lassila O., Hirvonen T., Toivanen P. Natural killer cell activity of human fetal liver cells after allogeneic stimulation. Scand J Immunol. 1985 Oct;22(4):433–439. doi: 10.1111/j.1365-3083.1985.tb01901.x. [DOI] [PubMed] [Google Scholar]
  37. Yssel H., De Vries J. E., Koken M., Van Blitterswijk W., Spits H. Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J Immunol Methods. 1984 Aug 3;72(1):219–227. doi: 10.1016/0022-1759(84)90450-2. [DOI] [PubMed] [Google Scholar]
  38. van Dongen J. J., Hooijkaas H., Comans-Bitter M., Hählen K., de Klein A., van Zanen G. E., van't Veer M. B., Abels J., Benner R. Human bone marrow cells positive for terminal deoxynucleotidyl transferase (TdT), HLA-DR, and a T cell marker may represent prothymocytes. J Immunol. 1985 Nov;135(5):3144–3150. [PubMed] [Google Scholar]
  39. van Dongen J. J., Quertermous T., Bartram C. R., Gold D. P., Wolvers-Tettero I. L., Comans-Bitter W. M., Hooijkaas H., Adriaansen H. J., de Klein A., Raghavachar A. T cell receptor-CD3 complex during early T cell differentiation. Analysis of immature T cell acute lymphoblastic leukemias (T-ALL) at DNA, RNA, and cell membrane level. J Immunol. 1987 Feb 15;138(4):1260–1269. [PubMed] [Google Scholar]
  40. van de Griend R. J., Bolhuis R. L., Stoter G., Roozemond R. C. Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J Immunol. 1987 May 15;138(10):3137–3144. [PubMed] [Google Scholar]
  41. van den Elsen P., Shepley B. A., Borst J., Coligan J. E., Markham A. F., Orkin S., Terhorst C. Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex. 1984 Nov 29-Dec 5Nature. 312(5993):413–418. doi: 10.1038/312413a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES