Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Jun 1;175(6):1739–1747. doi: 10.1084/jem.175.6.1739

VLA-4-fibronectin interaction is required for the terminal differentiation of human bone marrow cells capable of spontaneous and high rate immunoglobulin secretion

PMCID: PMC2119256  PMID: 1588291

Abstract

Human bone marrow (BM) is a relevant site for immunoglobulin (Ig) generation in vivo. The occurrence of BM cells capable of spontaneous and high rate Ig secretion for 14 d in vitro has been described previously. Accordingly, these cells provide a suitable model for studying terminal B cell maturation within the BM. We have reported recently that these BM cells are not totally differentiated when isolated from the body, as they require inductive signals from adherent stromal BM cells to complete their maturation. Interleukin (IL)-6 produced by these adherent BM cells was identified as one such signal. The present work shows that IL-6 was necessary, but not sufficient, for the induction of BM Ig-secreting cells, since the cytokine was unable to restore missing IgG in nonadherent BM cell cultures. Supernatants (SN) obtained from cultures of stromal adherent BM cells, either freshly isolated or derived from long-term BM culture (LTBMC), restored Ig secretion by nonadherent BM cells, suggesting that additional soluble factors from BM stromal cells were required. Fibronectin (FN) was identified as that factor, as can be deduced from the following findings: (a) stromal, but not nonadherent, BM cells constitutively produced FN; (b) anti-FN antibodies markedly reduced the IgG secretion in cultures of BM mononuclear cells (BMMC), and blocked the inductive effect of stromal cell SN on nonadherent BM cells, and such a blockade could be reversed by exogenous FN; and (c) finally, although neither IL- 6 nor FN alone exerted any effect, the combination of both factors induced optimal Ig secretion by nonadherent BM cells. Furthermore, VLA- 4 molecules seemed to be the FN receptor that was active in this culture system, as indicated by: (a) BM Ig-secreting cells exhibited the phenotype VLA-4+ VLA-5-; (b) mAbs directed to VLA-4 (anti-CD29 and anti-CD49d), but not those directed to other adhesion molecules, inhibited Ig secretion by BMMC cultures, and this effect was reversed by FN; (c) the inductive role of the entire FN molecule could be replaced by a fragment containing the CS-1 region, but not by a fragment containing the RGDS sequence; and (d) only mAbs anti-CD49d capable of blocking VLA-4-FN interaction inhibited induction by either the FN or the CS-1-containing fragment of FN.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdou N. I., Richter M. The role of bone marrow in the immune response. Adv Immunol. 1970;12:201–270. doi: 10.1016/s0065-2776(08)60170-4. [DOI] [PubMed] [Google Scholar]
  2. Andreoni C., Moreau I., Rigal D. Long-term culture of human bone marrow. I. characterization of adherent cells in flow cytometry. Exp Hematol. 1990 Jun;18(5):431–437. [PubMed] [Google Scholar]
  3. Benner R., van Oudenaren A., de Ruiter H. Antibody formation in mouse bone marrow. IX. Peripheral lymphoid organs are involved in the initiation of bone marrow antibody formation. Cell Immunol. 1977 Nov;34(1):125–137. doi: 10.1016/0008-8749(77)90235-0. [DOI] [PubMed] [Google Scholar]
  4. Brieva J. A., Martin R. A., Martinez-Maza O., Kagan J., Merrill J., Saxon A., Van Damme J., Stevens R. H. Interleukin 6 is essential for antibody secretion by human in vivo antigen-induced lymphoblastoid B cells. Cell Immunol. 1990 Oct 15;130(2):303–310. doi: 10.1016/0008-8749(90)90273-t. [DOI] [PubMed] [Google Scholar]
  5. Brieva J. A., Roldán E., De la Sen M. L., Rodriguez C. Human in vivo-induced spontaneous IgG-secreting cells from tonsil, blood and bone marrow exhibit different phenotype and functional level of maturation. Immunology. 1991 Apr;72(4):580–583. [PMC free article] [PubMed] [Google Scholar]
  6. Brieva J. A., Targan S., Stevens R. H. NK and T cell subsets regulate antibody production by human in vivo antigen-induced lymphoblastoid B cells. J Immunol. 1984 Feb;132(2):611–615. [PubMed] [Google Scholar]
  7. Davis L. S., Oppenheimer-Marks N., Bednarczyk J. L., McIntyre B. W., Lipsky P. E. Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules. J Immunol. 1990 Aug 1;145(3):785–793. [PubMed] [Google Scholar]
  8. De la Concha E. G., Subiza J. L., Fontán G., Pascual-Salcedo D., Sequí J., Bootello A. Disorders of regulatory T cells in patients with selective IgA deficiency and its relationship to associated autoimmune phenomena. Clin Exp Immunol. 1982 Aug;49(2):410–418. [PMC free article] [PubMed] [Google Scholar]
  9. Dilosa R. M., Maeda K., Masuda A., Szakal A. K., Tew J. G. Germinal center B cells and antibody production in the bone marrow. J Immunol. 1991 Jun 15;146(12):4071–4077. [PubMed] [Google Scholar]
  10. Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol. 1990;8:111–137. doi: 10.1146/annurev.iy.08.040190.000551. [DOI] [PubMed] [Google Scholar]
  11. Garcia-Pardo A., Ferreira O. C., Valinsky J., Bianco C. Fibronectin receptors of mononuclear phagocytes: binding characteristics and biochemical isolation. Exp Cell Res. 1989 Apr;181(2):420–431. doi: 10.1016/0014-4827(89)90099-2. [DOI] [PubMed] [Google Scholar]
  12. Garcia-Pardo A., Rostagno A., Frangione B. Primary structure of human plasma fibronectin. Characterization of a 38 kDa domain containing the C-terminal heparin-binding site (Hep III site) and a region of molecular heterogeneity. Biochem J. 1987 Feb 1;241(3):923–928. doi: 10.1042/bj2410923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia-Pardo A., Wayner E. A., Carter W. G., Ferreira O. C., Jr Human B lymphocytes define an alternative mechanism of adhesion to fibronectin. The interaction of the alpha 4 beta 1 integrin with the LHGPEILDVPST sequence of the type III connecting segment is sufficient to promote cell attachment. J Immunol. 1990 May 1;144(9):3361–3366. [PubMed] [Google Scholar]
  14. Guan J. L., Hynes R. O. Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell. 1990 Jan 12;60(1):53–61. doi: 10.1016/0092-8674(90)90715-q. [DOI] [PubMed] [Google Scholar]
  15. Hebell T., Götze O. The isolation of B lymphocytes from human peripheral blood using antibodies coupled to paramagnetic particles and rosetting techniques. J Immunol Methods. 1989 Oct 24;123(2):283–291. doi: 10.1016/0022-1759(89)90232-9. [DOI] [PubMed] [Google Scholar]
  16. Hemler M. E. Adhesive protein receptors on hematopoietic cells. Immunol Today. 1988 Apr;9(4):109–113. doi: 10.1016/0167-5699(88)91280-7. [DOI] [PubMed] [Google Scholar]
  17. Hemler M. E., Sanchez-Madrid F., Flotte T. J., Krensky A. M., Burakoff S. J., Bhan A. K., Springer T. A., Strominger J. L. Glycoproteins of 210,000 and 130,000 m.w. on activated T cells: cell distribution and antigenic relation to components on resting cells and T cell lines. J Immunol. 1984 Jun;132(6):3011–3018. [PubMed] [Google Scholar]
  18. Hibi T., Dosch H. M. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur J Immunol. 1986 Feb;16(2):139–145. doi: 10.1002/eji.1830160206. [DOI] [PubMed] [Google Scholar]
  19. Hibi T., Dosch H. M. Lymphocyte function in human bone marrow. III. Isotype commitment, metabolic and secretory characteristics of immunoglobulin producing cells. Cell Immunol. 1986 Mar;98(1):34–45. doi: 10.1016/0008-8749(86)90265-0. [DOI] [PubMed] [Google Scholar]
  20. Klagsbrun M., Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991 Oct 18;67(2):229–231. doi: 10.1016/0092-8674(91)90173-v. [DOI] [PubMed] [Google Scholar]
  21. Koch G., Osmond D. G., Julius M. H., Benner R. The mechanism of thymus-dependent antibody formation in bone marrow. J Immunol. 1981 Apr;126(4):1447–1451. [PubMed] [Google Scholar]
  22. Koch G., Weerheijm-De Wit C., Benner R. Quantitation of antibody production in mouse bone marrow during the secondary response to sheep erythrocytes. Int Arch Allergy Appl Immunol. 1982;67(3):239–244. doi: 10.1159/000233025. [DOI] [PubMed] [Google Scholar]
  23. Kodo H., Gale R. P., Saxon A. Antibody synthesis by bone marrow cells in vitro following primary and booster tetanus toxoid immunization in humans. J Clin Invest. 1984 May;73(5):1377–1384. doi: 10.1172/JCI111341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee K. C., Shiozawa C., Shaw A., Diener E. Requirement for accessory cells in the antibody response to T cell-independent antigens in vitro. Eur J Immunol. 1976 Jan;6(1):63–68. doi: 10.1002/eji.1830060114. [DOI] [PubMed] [Google Scholar]
  25. McMillan R., Longmire R. L., Yelenosky R., Lang J. E., Heath V., Craddock C. G. Immunoglobulin synthesis by human lymphoid tissues: normal bone marrow as a major site of IgG production. J Immunol. 1972 Dec;109(6):1386–1394. [PubMed] [Google Scholar]
  26. Miyake K., Weissman I. L., Greenberger J. S., Kincade P. W. Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med. 1991 Mar 1;173(3):599–607. doi: 10.1084/jem.173.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muraguchi A., Hirano T., Tang B., Matsuda T., Horii Y., Nakajima K., Kishimoto T. The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells. J Exp Med. 1988 Feb 1;167(2):332–344. doi: 10.1084/jem.167.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nojima Y., Humphries M. J., Mould A. P., Komoriya A., Yamada K. M., Schlossman S. F., Morimoto C. VLA-4 mediates CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin. J Exp Med. 1990 Oct 1;172(4):1185–1192. doi: 10.1084/jem.172.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Osmond D. G. Population dynamics of bone marrow B lymphocytes. Immunol Rev. 1986 Oct;93:103–124. doi: 10.1111/j.1600-065x.1986.tb01504.x. [DOI] [PubMed] [Google Scholar]
  30. Patel V. P., Lodish H. F. A fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes. J Cell Biol. 1987 Dec;105(6 Pt 2):3105–3118. doi: 10.1083/jcb.105.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Postigo A. A., Pulido R., Campanero M. R., Acevedo A., García-Pardo A., Corbi A. L., Sanchez-Madrid F., De Landazuri M. O. Differential expression of VLA-4 integrin by resident and peripheral blood B lymphocytes. Acquisition of functionally active alpha 4 beta 1-fibronectin receptors upon B cell activation. Eur J Immunol. 1991 Oct;21(10):2437–2445. doi: 10.1002/eji.1830211021. [DOI] [PubMed] [Google Scholar]
  32. Pulido R., Elices M. J., Campanero M. R., Osborn L., Schiffer S., García-Pardo A., Lobb R., Hemler M. E., Sánchez-Madrid F. Functional evidence for three distinct and independently inhibitable adhesion activities mediated by the human integrin VLA-4. Correlation with distinct alpha 4 epitopes. J Biol Chem. 1991 Jun 5;266(16):10241–10245. [PubMed] [Google Scholar]
  33. Robinson J. E., Smith D., Niederman J. Plasmacytic differentiation of circulating Epstein-Barr virus-infected B lymphocytes during acute infectious mononucleosis. J Exp Med. 1981 Feb 1;153(2):235–244. doi: 10.1084/jem.153.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roldán E., Brieva J. A. Terminal differentiation of human bone marrow cells capable of spontaneous and high-rate immunoglobulin secretion: role of bone marrow stromal cells and interleukin 6. Eur J Immunol. 1991 Nov;21(11):2671–2677. doi: 10.1002/eji.1830211105. [DOI] [PubMed] [Google Scholar]
  35. Saxon A., Mitsuyasu R., Stevens R., Champlin R. E., Kimata H., Gale R. P. Designed transfer of specific immune responses with bone marrow transplantation. J Clin Invest. 1986 Oct;78(4):959–967. doi: 10.1172/JCI112686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sekiguchi K., Titani K. Probing molecular polymorphism of fibronectins with antibodies directed to the alternatively spliced peptide segments. Biochemistry. 1989 Apr 18;28(8):3293–3298. doi: 10.1021/bi00434a026. [DOI] [PubMed] [Google Scholar]
  37. Sen M. L., Garcia-Alonso A., Brieva J. A. Human B lymphocytes capable of spontaneous Ig production in short-term cultures: characterization in the circulation and lymphoid tissues. Cell Immunol. 1986 Mar;98(1):200–210. doi: 10.1016/0008-8749(86)90280-7. [DOI] [PubMed] [Google Scholar]
  38. Shimizu Y., Van Seventer G. A., Horgan K. J., Shaw S. Regulated expression and binding of three VLA (beta 1) integrin receptors on T cells. Nature. 1990 May 17;345(6272):250–253. doi: 10.1038/345250a0. [DOI] [PubMed] [Google Scholar]
  39. Shimizu Y., van Seventer G. A., Horgan K. J., Shaw S. Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin. J Immunol. 1990 Jul 1;145(1):59–67. [PubMed] [Google Scholar]
  40. Spiegelman B. M., Ginty C. A. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell. 1983 Dec;35(3 Pt 2):657–666. doi: 10.1016/0092-8674(83)90098-3. [DOI] [PubMed] [Google Scholar]
  41. Splawski J. B., McAnally L. M., Lipsky P. E. IL-2 dependence of the promotion of human B cell differentiation by IL-6 (BSF-2). J Immunol. 1990 Jan 15;144(2):562–569. [PubMed] [Google Scholar]
  42. Sánchez-Madrid F., De Landázuri M. O., Morago G., Cebrián M., Acevedo A., Bernabeu C. VLA-3: a novel polypeptide association within the VLA molecular complex: cell distribution and biochemical characterization. Eur J Immunol. 1986 Nov;16(11):1343–1349. doi: 10.1002/eji.1830161106. [DOI] [PubMed] [Google Scholar]
  43. Tadmori W., Feingersh D., Clark S. C., Choi Y. S. Human recombinant IL-3 stimulates B cell differentiation. J Immunol. 1989 Mar 15;142(6):1950–1955. [PubMed] [Google Scholar]
  44. Takada Y., Huang C., Hemler M. E. Fibronectin receptor structures in the VLA family of heterodimers. Nature. 1987 Apr 9;326(6113):607–609. doi: 10.1038/326607a0. [DOI] [PubMed] [Google Scholar]
  45. Takada Y., Wayner E. A., Carter W. G., Hemler M. E. Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J Cell Biochem. 1988 Aug;37(4):385–393. doi: 10.1002/jcb.240370406. [DOI] [PubMed] [Google Scholar]
  46. Virtanen I., Ylänne J., Vartio T., Saksela E. Human natural killer cells express different integrins and spread on fibronectin. Scand J Immunol. 1991 Apr;33(4):421–428. doi: 10.1111/j.1365-3083.1991.tb01790.x. [DOI] [PubMed] [Google Scholar]
  47. Wayner E. A., Carter W. G., Piotrowicz R. S., Kunicki T. J. The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa. J Cell Biol. 1988 Nov;107(5):1881–1891. doi: 10.1083/jcb.107.5.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wayner E. A., Garcia-Pardo A., Humphries M. J., McDonald J. A., Carter W. G. Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol. 1989 Sep;109(3):1321–1330. doi: 10.1083/jcb.109.3.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weinstein R., Riordan M. A., Wenc K., Kreczko S., Zhou M., Dainiak N. Dual role of fibronectin in hematopoietic differentiation. Blood. 1989 Jan;73(1):111–116. [PubMed] [Google Scholar]
  50. Williams D. A., Rios M., Stephens C., Patel V. P. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature. 1991 Aug 1;352(6334):438–441. doi: 10.1038/352438a0. [DOI] [PubMed] [Google Scholar]
  51. Zhu B. C., Fisher S. F., Pande H., Calaycay J., Shively J. E., Laine R. A. Human placental (fetal) fibronectin: increased glycosylation and higher protease resistance than plasma fibronectin. Presence of polylactosamine glycopeptides and properties of a 44-kilodalton chymotryptic collagen-binding domain: difference from human plasma fibronectin. J Biol Chem. 1984 Mar 25;259(6):3962–3970. [PubMed] [Google Scholar]
  52. Zuckerman K. S., Wicha M. S. Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood. 1983 Mar;61(3):540–547. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES