Abstract
Previous work has demonstrated that intergenic V(D)J rearrangement, a process referred to as trans-rearrangement, occurs at an unexpectedly high frequency. These rearrangements generate novel V(D)J combinations which could conceivably have some role in the normal immune system, and since they probably arise through chromosomal rearrangements akin to those associated with lymphoid neoplasia, they may also serve as a model for investigating recombinational events which underlie oncogenesis. In view of the existence of a mechanism that permits relatively frequent intergenic trans-rearrangements, it seems reasonable that interallelic trans-rearrangements involving segments belonging to each of the two alleles of a single antigen receptor gene might also occur. To determine the frequency of such rearrangements, we examined thymocytes of F1 progeny of a cross between SWR mice, which have a deletion spanning 10 of the known V beta segments, and NZW mice, which have a deletion involving all J beta 2 segments. Rearranged TCR- beta genes containing V beta segments from the NZW chromosome and J beta segments from the SWR chromosome were amplified from the DNA of F1 thymocytes with the polymerase chain reaction. Using this approach, we found that such rearrangements are relatively uncommon, being present in about 1 in 10(5) thymocytes, a frequency lower than that of V gamma/J beta intergenic trans-rearrangements. The ratio of conventional cis-rearrangement to interallelic trans-rearrangement for any particular V beta segment appears to be about 10(4):1. The structure of the junctions in all trans-rearrangements analyzed closely resembles conventional cis-rearrangements, indicating involvement of V(D)J recombinase in the ultimate joining event. However, in contrast to cis- rearrangements, a strong bias for inclusion of D beta 1 segments over D beta 2 segments was noted, suggesting that interallelic trans- rearrangement may occur preferentially during attempted D-J joining. J beta 2 segment usage in trans-rearrangements also appeared to differ from that expected from previously studied cis-rearrangements. The results have implications with respect to the events and timing of conventional cis-rearrangement during thymocyte differentiation, and the prevalence of various types of trans-rearrangements.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akira S., Okazaki K., Sakano H. Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science. 1987 Nov 20;238(4830):1134–1138. doi: 10.1126/science.3120312. [DOI] [PubMed] [Google Scholar]
- Alt F. W., Blackwell T. K., Yancopoulos G. D. Development of the primary antibody repertoire. Science. 1987 Nov 20;238(4830):1079–1087. doi: 10.1126/science.3317825. [DOI] [PubMed] [Google Scholar]
- Becker R. S., Knight K. L. Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell. 1990 Nov 30;63(5):987–997. doi: 10.1016/0092-8674(90)90502-6. [DOI] [PubMed] [Google Scholar]
- Behlke M. A., Chou H. S., Huppi K., Loh D. Y. Murine T-cell receptor mutants with deletions of beta-chain variable region genes. Proc Natl Acad Sci U S A. 1986 Feb;83(3):767–771. doi: 10.1073/pnas.83.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boehm T., Rabbitts T. H. The human T cell receptor genes are targets for chromosomal abnormalities in T cell tumors. FASEB J. 1989 Oct;3(12):2344–2359. doi: 10.1096/fasebj.3.12.2676678. [DOI] [PubMed] [Google Scholar]
- Candéias S., Waltzinger C., Benoist C., Mathis D. The V beta 17+ T cell repertoire: skewed J beta usage after thymic selection; dissimilar CDR3s in CD4+ versus CD8+ cells. J Exp Med. 1991 Nov 1;174(5):989–1000. doi: 10.1084/jem.174.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou H. S., Anderson S. J., Louie M. C., Godambe S. A., Pozzi M. R., Behlke M. A., Huppi K., Loh D. Y. Tandem linkage and unusual RNA splicing of the T-cell receptor beta-chain variable-region genes. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1992–1996. doi: 10.1073/pnas.84.7.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou H. S., Anderson S. J., Louie M. C., Godambe S. A., Pozzi M. R., Behlke M. A., Huppi K., Loh D. Y. Tandem linkage and unusual RNA splicing of the T-cell receptor beta-chain variable-region genes. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1992–1996. doi: 10.1073/pnas.84.7.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crispe I. N., Husmann L. A., Bevan M. J. T cell receptor expression and receptor-mediated induction of clonal growth in the developing mouse thymus. High surface beta-chain density is a requirement for functional maturity. Eur J Immunol. 1986 Oct;16(10):1283–1288. doi: 10.1002/eji.1830161016. [DOI] [PubMed] [Google Scholar]
- Feeney A. J. Junctional sequences of fetal T cell receptor beta chains have few N regions. J Exp Med. 1991 Jul 1;174(1):115–124. doi: 10.1084/jem.174.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitts M. G., Metzger D. W. Identification of rabbit genomic Ig-VH pseudogenes that could serve as donor sequences for latent allotype expression. J Immunol. 1990 Oct 15;145(8):2713–2717. [PubMed] [Google Scholar]
- Garman R. D., Doherty P. J., Raulet D. H. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell. 1986 Jun 6;45(5):733–742. doi: 10.1016/0092-8674(86)90787-7. [DOI] [PubMed] [Google Scholar]
- Gascoigne N. R., Chien Y., Becker D. M., Kavaler J., Davis M. M. Genomic organization and sequence of T-cell receptor beta-chain constant- and joining-region genes. Nature. 1984 Aug 2;310(5976):387–391. doi: 10.1038/310387a0. [DOI] [PubMed] [Google Scholar]
- Gerstein R. M., Frankel W. N., Hsieh C. L., Durdik J. M., Rath S., Coffin J. M., Nisonoff A., Selsing E. Isotype switching of an immunoglobulin heavy chain transgene occurs by DNA recombination between different chromosomes. Cell. 1990 Nov 2;63(3):537–548. doi: 10.1016/0092-8674(90)90450-s. [DOI] [PubMed] [Google Scholar]
- Hesse J. E., Lieber M. R., Gellert M., Mizuuchi K. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell. 1987 Jun 19;49(6):775–783. doi: 10.1016/0092-8674(87)90615-5. [DOI] [PubMed] [Google Scholar]
- Knight K. L., Malek T. R., Hanly W. C. Recombinant rabbit secretory immunoglobulin molecules: alpha chains with maternal (paternal) variable-region allotypes and paternal (maternal) constant-region allotypes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1169–1173. doi: 10.1073/pnas.71.4.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi Y., Tycko B., Soreng A. L., Sklar J. Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. J Immunol. 1991 Nov 1;147(9):3201–3209. [PubMed] [Google Scholar]
- Lipkowitz S., Stern M. H., Kirsch I. R. Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasis lymphocytes. J Exp Med. 1990 Aug 1;172(2):409–418. doi: 10.1084/jem.172.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malissen M., Minard K., Mjolsness S., Kronenberg M., Goverman J., Hunkapiller T., Prystowsky M. B., Yoshikai Y., Fitch F., Mak T. W. Mouse T cell antigen receptor: structure and organization of constant and joining gene segments encoding the beta polypeptide. Cell. 1984 Jul;37(3):1101–1110. doi: 10.1016/0092-8674(84)90444-6. [DOI] [PubMed] [Google Scholar]
- Manuelidis L. A view of interphase chromosomes. Science. 1990 Dec 14;250(4987):1533–1540. doi: 10.1126/science.2274784. [DOI] [PubMed] [Google Scholar]
- Metzger D. W. The nature of antiidiotype molecules induced by antiallotype. Presence of both latent allotype and allotypic internal images. J Exp Med. 1985 Jul 1;162(1):35–44. doi: 10.1084/jem.162.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada C. Y., Weissman I. L. Relative V beta transcript levels in thymus and peripheral lymphoid tissues from various mouse strains. Inverse correlation of I-E and Mls expression with relative abundance of several V beta transcripts in peripheral lymphoid tissues. J Exp Med. 1989 May 1;169(5):1703–1719. doi: 10.1084/jem.169.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pernis B., Forni L., Dubiski S., Kelus A. S., Mandy W. J., Todd C. W. Heavy chain variable and constant region allotypes in single rabbit plasma cells. Immunochemistry. 1973 May;10(5):281–285. doi: 10.1016/0019-2791(73)90023-2. [DOI] [PubMed] [Google Scholar]
- Reynaud C. A., Anquez V., Grimal H., Weill J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell. 1987 Feb 13;48(3):379–388. doi: 10.1016/0092-8674(87)90189-9. [DOI] [PubMed] [Google Scholar]
- Sanger F. Determination of nucleotide sequences in DNA. Science. 1981 Dec 11;214(4526):1205–1210. doi: 10.1126/science.7302589. [DOI] [PubMed] [Google Scholar]
- Shimizu A., Nussenzweig M. C., Mizuta T. R., Leder P., Honjo T. Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8020–8023. doi: 10.1073/pnas.86.20.8020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suter M., Becker R. S., Knight K. L. Rearrangement of VHa1-encoding Ig gene segment to the a2 chromosome in an a1/a2 heterozygous rabbit. Evidence for trans recombination. J Immunol. 1990 Mar 1;144(5):1997–2000. [PubMed] [Google Scholar]
- Thompson C. B., Neiman P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell. 1987 Feb 13;48(3):369–378. doi: 10.1016/0092-8674(87)90188-7. [DOI] [PubMed] [Google Scholar]
- Tosi S. L., Tosi R. M. Recombinant IgG molecules in rabbits doubly heterozygous for group a and group e allotypic specificities. Immunochemistry. 1973 Feb;10(2):65–71. doi: 10.1016/0019-2791(73)90232-2. [DOI] [PubMed] [Google Scholar]
- Tycko B., Coyle H., Sklar J. Chimeric gamma-delta signal joints. Implications for the mechanism and regulation of T cell receptor gene rearrangement. J Immunol. 1991 Jul 15;147(2):705–713. [PubMed] [Google Scholar]
- Tycko B., Palmer J. D., Sklar J. T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. Science. 1989 Sep 15;245(4923):1242–1246. doi: 10.1126/science.2551037. [DOI] [PubMed] [Google Scholar]
- Tycko B., Reynolds T. C., Smith S. D., Sklar J. Consistent breakage between consensus recombinase heptamers of chromosome 9 DNA in a recurrent chromosomal translocation of human T cell leukemia. J Exp Med. 1989 Feb 1;169(2):369–377. doi: 10.1084/jem.169.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch J. P., Lee C. L., Beatty-DeSana J. W., Hoggard M. J., Cooledge J. W., Hecht F., McCaw B. K., Peakman D., Robinson A. Non-random occurrence of 7-14 translocations in human lymphocyte cultures. Nature. 1975 May 15;255(5505):241–245. doi: 10.1038/255241a0. [DOI] [PubMed] [Google Scholar]
- Woodland D. L., Kotzin B. L., Palmer E. Functional consequences of a T cell receptor D beta 2 and J beta 2 gene segment deletion. J Immunol. 1990 Jan 1;144(1):379–385. [PubMed] [Google Scholar]
- Yancopoulos G. D., Alt F. W. Regulation of the assembly and expression of variable-region genes. Annu Rev Immunol. 1986;4:339–368. doi: 10.1146/annurev.iy.04.040186.002011. [DOI] [PubMed] [Google Scholar]