Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Oct 1;176(4):1137–1148. doi: 10.1084/jem.176.4.1137

Clonal expansion in follicular lymphoma occurs subsequent to antigenic selection

PMCID: PMC2119381  PMID: 1402658

Abstract

The genesis of human follicular lymphoma (FL) is a multistep process. The initial event is thought to be the chromosomal translocation t(14;18)(q32;q21) juxtaposing the bcl-2 proto-oncogene with the immunoglobulin (Ig) H chain locus joining segment (JH) as an error of D- J or V-D joining in the pre-B cell. However, FL is recognized clinically as a tumor of surface Ig (sIg)-positive B cells with morphologic and phenotypic similarities to the centrocyte of the secondary immune response. Thus, additional steps must be involved in the clonal expansion of the FL tumor cell beyond the activation of bcl- 2 as a consequence of the t(14;18) translocation. Like the normal centrocyte, somatic mutations accumulate in the variable (V) genes of FL tumor B cells. To determine if clonal expansion of FL occurs before or after the development of the malignant follicle, we sought to examine the evolution of the FL V gene from its unmutated germline (GL) counterpart. To obtain the GL gene we first cloned the productively rearranged V gene of patient MT FL and obtained the clone rMTF. A hybridization probe derived from the 2.1-kb region upstream of the V gene in clone rMTF identified a single band in Southern blot hybridization of GL DNA. This probe was used to screen a size-selected library, and candidate GL V genes were isolated. Two identical clones, MTGL1 and 2, proved to have upstream regions (USRs) that were colinear with the USR of the rMTF. Thus, the MTGL clones represent the unmutated GL V genes, which were productively rearranged in the MT FL. Comparison of the GL V gene sequence to a consensus of MT FL V gene sequences revealed 42 mutations, demonstrating that malignant clonal expansion occurred subsequent to the activation of somatic mutation, presumably in the malignant follicle. Furthermore, the individual FL V gene sequences segregated into two distinct patterns of mutation. The major population represented 71% of the clones, and the minor population 29%. To investigate possible mechanisms for the parallel selection of distinct tumor cell populations, we analyzed the pattern of silent and replacement mutations within the V gene sequences. We found that in the framework regions (FRs) of both populations there were significantly fewer replacement changes than expected, suggesting that negative selective pressure was maintaining the structural integrity of the sIg. In contrast, the complementarity determining regions (CDRs), which make up the antigen binding domain of Ig, had an excess of replacement changes, suggesting positive selection for altered ligand binding.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acker B., Hoppe R. T., Colby T. V., Cox R. S., Kaplan H. S., Rosenberg S. A. Histologic conversion in the non-Hodgkin's lymphomas. J Clin Oncol. 1983 Jan;1(1):11–16. doi: 10.1200/JCO.1983.1.1.11. [DOI] [PubMed] [Google Scholar]
  2. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 6 A resolution. Nature. 1985 Jan 10;313(5998):156–158. doi: 10.1038/313156a0. [DOI] [PubMed] [Google Scholar]
  3. Bahler D. W., Levy R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6770–6774. doi: 10.1073/pnas.89.15.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Epstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985 Jul;41(3):899–906. doi: 10.1016/s0092-8674(85)80070-2. [DOI] [PubMed] [Google Scholar]
  5. Bakhshi A., Wright J. J., Graninger W., Seto M., Owens J., Cossman J., Jensen J. P., Goldman P., Korsmeyer S. J. Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2396–2400. doi: 10.1073/pnas.84.8.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
  7. Berman J. E., Mellis S. J., Pollock R., Smith C. L., Suh H., Heinke B., Kowal C., Surti U., Chess L., Cantor C. R. Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig CH locus. EMBO J. 1988 Mar;7(3):727–738. doi: 10.1002/j.1460-2075.1988.tb02869.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bertoli L. F., Kubagawa H., Borzillo G. V., Burrows P. D., Schreeder M. T., Carroll A. J., Cooper M. D. Bone marrow origin of a B-cell lymphoma. Blood. 1988 Jul;72(1):94–101. [PubMed] [Google Scholar]
  9. Campbell M. J., Zelenetz A. D., Levy S., Levy R. Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Mol Immunol. 1992 Feb;29(2):193–203. doi: 10.1016/0161-5890(92)90100-c. [DOI] [PubMed] [Google Scholar]
  10. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  11. Cleary M. L., Galili N., Sklar J. Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med. 1986 Jul 1;164(1):315–320. doi: 10.1084/jem.164.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cleary M. L., Galili N., Trela M., Levy R., Sklar J. Single cell origin of bigenotypic and biphenotypic B cell proliferations in human follicular lymphomas. J Exp Med. 1988 Feb 1;167(2):582–597. doi: 10.1084/jem.167.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cleary M. L., Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7439–7443. doi: 10.1073/pnas.82.21.7439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cotter F., Price C., Zucca E., Young B. D. Direct sequence analysis of the 14q+ and 18q- chromosome junctions in follicular lymphoma. Blood. 1990 Jul 1;76(1):131–135. [PubMed] [Google Scholar]
  15. Crescenzi M., Seto M., Herzig G. P., Weiss P. D., Griffith R. C., Korsmeyer S. J. Thermostable DNA polymerase chain amplification of t(14;18) chromosome breakpoints and detection of minimal residual disease. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4869–4873. doi: 10.1073/pnas.85.13.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dighiero G., Hart S., Lim A., Borche L., Levy R., Miller R. A. Autoantibody activity of immunoglobulins isolated from B-cell follicular lymphomas. Blood. 1991 Aug 1;78(3):581–585. [PubMed] [Google Scholar]
  18. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Early P., Huang H., Davis M., Calame K., Hood L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell. 1980 Apr;19(4):981–992. doi: 10.1016/0092-8674(80)90089-6. [DOI] [PubMed] [Google Scholar]
  20. Ersbøll J., Schultz H. B., Pedersen-Bjergaard J., Nissen N. I. Follicular low-grade non-Hodgkin's lymphoma: long-term outcome with or without tumor progression. Eur J Haematol. 1989 Feb;42(2):155–163. doi: 10.1111/j.1600-0609.1989.tb01205.x. [DOI] [PubMed] [Google Scholar]
  21. Freedman A. S., Munro J. M., Morimoto C., McIntyre B. W., Rhynhart K., Lee N., Nadler L. M. Follicular non-Hodgkin's lymphoma cell adhesion to normal germinal centers and neoplastic follicles involves very late antigen-4 and vascular cell adhesion molecule-1. Blood. 1992 Jan 1;79(1):206–212. [PubMed] [Google Scholar]
  22. Friedman D. F., Cho E. A., Goldman J., Carmack C. E., Besa E. C., Hardy R. R., Silberstein L. E. The role of clonal selection in the pathogenesis of an autoreactive human B cell lymphoma. J Exp Med. 1991 Sep 1;174(3):525–537. doi: 10.1084/jem.174.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Garcia C. F., Warnke R. A., Weiss L. M. Follicular large cell lymphoma. An immunophenotype study. Am J Pathol. 1986 Jun;123(3):425–431. [PMC free article] [PubMed] [Google Scholar]
  24. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  25. Hockenbery D., Nuñez G., Milliman C., Schreiber R. D., Korsmeyer S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990 Nov 22;348(6299):334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
  26. Hubbard S. M., Chabner B. A., DeVita V. T., Jr, Simon R., Berard C. W., Jones R. B., Garvin A. J., Canellos G. P., Osborne C. K., Young R. C. Histologic progression in non-Hodgkin's lymphoma. Blood. 1982 Feb;59(2):258–264. [PubMed] [Google Scholar]
  27. Inghirami G., Wieczorek R., Zhu B. Y., Silber R., Dalla-Favera R., Knowles D. M. Differential expression of LFA-1 molecules in non-Hodgkin's lymphoma and lymphoid leukemia. Blood. 1988 Oct;72(4):1431–1434. [PubMed] [Google Scholar]
  28. Jukes T. H., King J. L. Evolutionary nucleotide replacements in DNA. Nature. 1979 Oct 18;281(5732):605–606. doi: 10.1038/281605a0. [DOI] [PubMed] [Google Scholar]
  29. Levy R., Warnke R., Dorfman R. F., Haimovich J. The monoclonality of human B-cell lymphomas. J Exp Med. 1977 Apr 1;145(4):1014–1028. doi: 10.1084/jem.145.4.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Limpens J., de Jong D., van Krieken J. H., Price C. G., Young B. D., van Ommen G. J., Kluin P. M. Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene. 1991 Dec;6(12):2271–2276. [PubMed] [Google Scholar]
  31. McDonnell T. J., Deane N., Platt F. M., Nunez G., Jaeger U., McKearn J. P., Korsmeyer S. J. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989 Apr 7;57(1):79–88. doi: 10.1016/0092-8674(89)90174-8. [DOI] [PubMed] [Google Scholar]
  32. McDonnell T. J., Korsmeyer S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature. 1991 Jan 17;349(6306):254–256. doi: 10.1038/349254a0. [DOI] [PubMed] [Google Scholar]
  33. Medeiros L. J., Weiss L. M., Picker L. J., Clayberger C., Horning S. J., Krensky A. M., Warnke R. A. Expression of LFA-1 in non-Hodgkin's lymphoma. Cancer. 1989 Jan 15;63(2):255–259. doi: 10.1002/1097-0142(19890115)63:2<255::aid-cncr2820630209>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  34. Meeker T. C., Lowder J., Maloney D. G., Miller R. A., Thielemans K., Warnke R., Levy R. A clinical trial of anti-idiotype therapy for B cell malignancy. Blood. 1985 Jun;65(6):1349–1363. [PubMed] [Google Scholar]
  35. Nunez G., Seto M., Seremetis S., Ferrero D., Grignani F., Korsmeyer S. J., Dalla-Favera R. Growth- and tumor-promoting effects of deregulated BCL2 in human B-lymphoblastoid cells. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4589–4593. doi: 10.1073/pnas.86.12.4589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ravetch J. V., Siebenlist U., Korsmeyer S., Waldmann T., Leder P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981 Dec;27(3 Pt 2):583–591. doi: 10.1016/0092-8674(81)90400-1. [DOI] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
  40. Shlomchik M., Mascelli M., Shan H., Radic M. Z., Pisetsky D., Marshak-Rothstein A., Weigert M. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med. 1990 Jan 1;171(1):265–292. doi: 10.1084/jem.171.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Silberstein L. E., Goldman J., Kant J. A., Spitalnik S. L. Comparative biochemical and genetic characterization of clonally related human B-cell lines secreting pathogenic anti-Pr2 cold agglutinins. Arch Biochem Biophys. 1988 Jul;264(1):244–252. doi: 10.1016/0003-9861(88)90591-7. [DOI] [PubMed] [Google Scholar]
  42. Stein H., Gerdes J., Mason D. Y. The normal and malignant germinal centre. Clin Haematol. 1982 Oct;11(3):531–559. [PubMed] [Google Scholar]
  43. Strasser A., Harris A. W., Bath M. L., Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature. 1990 Nov 22;348(6299):331–333. doi: 10.1038/348331a0. [DOI] [PubMed] [Google Scholar]
  44. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  45. Tsujimoto Y., Cossman J., Jaffe E., Croce C. M. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985 Jun 21;228(4706):1440–1443. doi: 10.1126/science.3874430. [DOI] [PubMed] [Google Scholar]
  46. Tsujimoto Y., Gorham J., Cossman J., Jaffe E., Croce C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985 Sep 27;229(4720):1390–1393. doi: 10.1126/science.3929382. [DOI] [PubMed] [Google Scholar]
  47. Tsujimoto Y., Louie E., Bashir M. M., Croce C. M. The reciprocal partners of both the t(14; 18) and the t(11; 14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene. 1988 Apr;2(4):347–351. [PubMed] [Google Scholar]
  48. Umetsu D. T., Esserman L., Donlon T. A., DeKruyff R. H., Levy R. Induction of proliferation of human follicular (B type) lymphoma cells by cognate interaction with CD4+ T cell clones. J Immunol. 1990 Apr 1;144(7):2550–2557. [PubMed] [Google Scholar]
  49. Vaux D. L., Cory S., Adams J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988 Sep 29;335(6189):440–442. doi: 10.1038/335440a0. [DOI] [PubMed] [Google Scholar]
  50. Weiss L. M., Warnke R. A., Sklar J., Cleary M. L. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med. 1987 Nov 5;317(19):1185–1189. doi: 10.1056/NEJM198711053171904. [DOI] [PubMed] [Google Scholar]
  51. Wyatt R. T., Rudders R. A., Zelenetz A., Delellis R. A., Krontiris T. G. BCL2 oncogene translocation is mediated by a chi-like consensus. J Exp Med. 1992 Jun 1;175(6):1575–1588. doi: 10.1084/jem.175.6.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yunis J. J., Frizzera G., Oken M. M., McKenna J., Theologides A., Arnesen M. Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N Engl J Med. 1987 Jan 8;316(2):79–84. doi: 10.1056/NEJM198701083160204. [DOI] [PubMed] [Google Scholar]
  53. Yunis J. J., Oken M. M., Kaplan M. E., Ensrud K. M., Howe R. R., Theologides A. Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin's lymphoma. N Engl J Med. 1982 Nov 11;307(20):1231–1236. doi: 10.1056/NEJM198211113072002. [DOI] [PubMed] [Google Scholar]
  54. Zelenetz A. D., Chen T. T., Levy R. Histologic transformation of follicular lymphoma to diffuse lymphoma represents tumor progression by a single malignant B cell. J Exp Med. 1991 Jan 1;173(1):197–207. doi: 10.1084/jem.173.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zelenetz A. D., Chu G., Galili N., Bangs C. D., Horning S. J., Donlon T. A., Cleary M. L., Levy R. Enhanced detection of the t(14;18) translocation in malignant lymphoma using pulsed-field gel electrophoresis. Blood. 1991 Sep 15;78(6):1552–1560. [PubMed] [Google Scholar]
  56. Zelenetz A. D., Levy R. Directional cloning of cDNA using a selectable SfiI cassette. Gene. 1990 Apr 30;89(1):123–127. doi: 10.1016/0378-1119(90)90214-c. [DOI] [PubMed] [Google Scholar]
  57. de Jong D., Voetdijk B. M., Van Ommen G. J., Kluin-Nelemans J. C., Beverstock G. C., Kluin P. M. Translocation t(14;18) in B cell lymphomas as a cause for defective immunoglobulin production. J Exp Med. 1989 Mar 1;169(3):613–624. doi: 10.1084/jem.169.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES