Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Oct 1;176(4):1033–1041. doi: 10.1084/jem.176.4.1033

Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment [published erratum appears in J Exp Med 1993 Mar 1;177(3):following 873]

PMCID: PMC2119406  PMID: 1402649

Abstract

Human monocyte-derived macrophages ingest diamide-treated red blood cells (RBC), anti-D immunoglobulin (Ig)G-opsonized RBC, or Plasmodium falciparum ring-stage parasitized RBC (RPRBC), degrade ingested hemoglobin rapidly, and can repeat the phagocytic cycle. Monocytes fed with trophozoite-parasitized RBC (TPRBC), which contain malarial pigment, or fed with isolated pigment are virtually unable to degrade the ingested material and to repeat the phagocytic cycle. Monocytes fed with pigment display a long-lasting oxidative burst that does not occur when they phagocytose diamide-treated RBC or RPRBC. The phorbol myristate acetate-elicited oxidative burst is irreversibly suppressed in monocytes fed with TPRBC or pigment, but not in monocytes fed with diamide-treated or IgG-opsonized RBC. This pattern of inhibition of phagocytosis and oxidative burst suggests that malarial pigment is responsible for the toxic effects. Pigment iron released in the monocyte phagolysosome may be the responsible element. 3% of total pigment iron is labile and easily detached under conditions simulating the internal environment of the phagolysosome, i.e., pH 5.5 and 10 microM H2O2. Iron liberated from pigment could account for the lipid peroxidation and increased production of malondialdehyde observed in monocytes fed with pigment or in RBC ghosts and liposomes incubated at pH 6.5 in presence of pigment and low amounts of H2O2. Removal of the labile iron fraction from pigment by repeated treatments with 0.1 mM H2O2 at pH 5.5 reduces pigment toxicity. It is suggested that iron released from ingested pigment is responsible for the intoxication of monocytes. In acute and chronic falciparum infections, circulating and tissue-resident phagocytes are seen filled with TPRBC and pigment particles over long periods of time. Moreover, human monocytes previously fed with TPRBC are unable to neutralize pathogenic bacteria, fungi, and tumor cells, and macrophage responses decline during the course of human and animal malaria. The present results may offer a mechanistic explanation for depression of cellular immunity in malaria.

Full Text

The Full Text of this article is available as a PDF (987.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdalla S. H. Hematopoiesis in human malaria. Blood Cells. 1990;16(2-3):401–419. [PubMed] [Google Scholar]
  2. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  3. Allison A. C., Eugui E. M. The role of cell-mediated immune responses in resistance to malaria, with special reference to oxidant stress. Annu Rev Immunol. 1983;1:361–392. doi: 10.1146/annurev.iy.01.040183.002045. [DOI] [PubMed] [Google Scholar]
  4. Arese P., De Flora A. Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol. 1990 Jan;27(1):1–40. [PubMed] [Google Scholar]
  5. Ashong J. O., Blench I. P., Warhurst D. C. The composition of haemozoin from Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1989 Mar-Apr;83(2):167–172. doi: 10.1016/0035-9203(89)90631-7. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Brown A. E., Webster H. K., Teja-Isavadharm P., Keeratithakul D. Macrophage activation in falciparum malaria as measured by neopterin and interferon-gamma. Clin Exp Immunol. 1990 Oct;82(1):97–101. doi: 10.1111/j.1365-2249.1990.tb05410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bussolino F., Turrini F., Arese P. Measurement of phagocytosis utilizing [14C]cyanate-labelled human red cells and monocytes. Br J Haematol. 1987 Jun;66(2):271–274. doi: 10.1111/j.1365-2141.1987.tb01311.x. [DOI] [PubMed] [Google Scholar]
  9. Celada A., Cruchaud A., Perrin L. H. Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol. 1982 Mar;47(3):635–644. [PMC free article] [PubMed] [Google Scholar]
  10. Descamps-Latscha B., Lunel-Fabiani F., Kara-Binis A., Druilhe P. Generation of reactive oxygen species in whole blood from patients with acute falciparum malaria. Parasite Immunol. 1987 Mar;9(2):275–279. doi: 10.1111/j.1365-3024.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
  11. Frei B., Yamamoto Y., Niclas D., Ames B. N. Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma. Anal Biochem. 1988 Nov 15;175(1):120–130. doi: 10.1016/0003-2697(88)90369-7. [DOI] [PubMed] [Google Scholar]
  12. Goldberg D. E., Slater A. F., Cerami A., Henderson G. B. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2931–2935. doi: 10.1073/pnas.87.8.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greenwood B., Marsh K., Snow R. Why do some African children develop severe malaria? Parasitol Today. 1991 Oct;7(10):277–281. doi: 10.1016/0169-4758(91)90096-7. [DOI] [PubMed] [Google Scholar]
  14. Gutteridge J. M., Rowley D. A., Halliwell B., Westermarck T. Increased non-protein-bound iron and decreased protection against superoxide-radical damage in cerebrospinal fluid from patients with neuronal ceroid lipofuscinoses. Lancet. 1982 Aug 28;2(8296):459–460. doi: 10.1016/s0140-6736(82)90492-5. [DOI] [PubMed] [Google Scholar]
  15. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halliwell B. Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic Biol Med. 1989;7(6):645–651. doi: 10.1016/0891-5849(89)90145-7. [DOI] [PubMed] [Google Scholar]
  17. Hartley A., Davies M., Rice-Evans C. Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes. FEBS Lett. 1990 May 7;264(1):145–148. doi: 10.1016/0014-5793(90)80786-i. [DOI] [PubMed] [Google Scholar]
  18. Ho M., Webster H. K. Immunology of human malaria. A cellular perspective. Parasite Immunol. 1989 Mar;11(2):105–116. doi: 10.1111/j.1365-3024.1989.tb00652.x. [DOI] [PubMed] [Google Scholar]
  19. Ho M., White N. J., Looareesuwan S., Wattanagoon Y., Lee S. H., Walport M. J., Bunnag D., Harinasuta T. Splenic Fc receptor function in host defense and anemia in acute Plasmodium falciparum malaria. J Infect Dis. 1990 Mar;161(3):555–561. doi: 10.1093/infdis/161.3.555. [DOI] [PubMed] [Google Scholar]
  20. Hsiao L. L., Howard R. J., Aikawa M., Taraschi T. F. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J. 1991 Feb 15;274(Pt 1):121–132. doi: 10.1042/bj2740121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunt N. H., Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells. 1990;16(2-3):499–530. [PubMed] [Google Scholar]
  22. Jayshree R. S., Ganguly N. K., Sethi A. K., Mahajan R. C. Changes in the superoxide anion generating capacity and respiratory burst enzymes of peripheral blood monocytes of monkeys during acute Plasmodium knowlesi infection. Parasite Immunol. 1989 Sep;11(5):503–507. doi: 10.1111/j.1365-3024.1989.tb00684.x. [DOI] [PubMed] [Google Scholar]
  23. Johansson A., Dahlgren C. Characterization of the luminol-amplified light-generating reaction induced in human monocytes. J Leukoc Biol. 1989 May;45(5):444–451. doi: 10.1002/jlb.45.5.444. [DOI] [PubMed] [Google Scholar]
  24. Johnston R. B., Jr Current concepts: immunology. Monocytes and macrophages. N Engl J Med. 1988 Mar 24;318(12):747–752. doi: 10.1056/NEJM198803243181205. [DOI] [PubMed] [Google Scholar]
  25. Kutner S., Breuer W. V., Ginsburg H., Aley S. B., Cabantchik Z. I. Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. J Cell Physiol. 1985 Dec;125(3):521–527. doi: 10.1002/jcp.1041250323. [DOI] [PubMed] [Google Scholar]
  26. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  27. Lutz H. U., Fasler S., Stammler P., Bussolino F., Arese P. Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells. Blood Cells. 1988;14(1):175–203. [PubMed] [Google Scholar]
  28. Nagel R. L. Innate resistance to malaria: the intraerythrocytic cycle. Blood Cells. 1990;16(2-3):321–349. [PubMed] [Google Scholar]
  29. Nagel R. L., Roth E. F., Jr Malaria and red cell genetic defects. Blood. 1989 Sep;74(4):1213–1221. [PubMed] [Google Scholar]
  30. Perrin L. H., Mackey L. J., Miescher P. A. The hematology of malaria in man. Semin Hematol. 1982 Apr;19(2):70–82. [PubMed] [Google Scholar]
  31. Pongponratn E., Riganti M., Bunnag D., Harinasuta T. Spleen in falciparum malaria: ultrastructural study. Southeast Asian J Trop Med Public Health. 1987 Dec;18(4):491–501. [PubMed] [Google Scholar]
  32. Rice-Evans C., Baysal E. Iron-mediated oxidative stress in erythrocytes. Biochem J. 1987 May 15;244(1):191–196. doi: 10.1042/bj2440191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shannon K. Genetic alterations in leukemia: events on a grand scale. Blood. 1992 Jul 1;80(1):1–2. [PubMed] [Google Scholar]
  34. Shear H. L., Nussenzweig R. S., Bianco C. Immune phagocytosis in murine malaria. J Exp Med. 1979 Jun 1;149(6):1288–1298. doi: 10.1084/jem.149.6.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Slater A. F., Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature. 1992 Jan 9;355(6356):167–169. doi: 10.1038/355167a0. [DOI] [PubMed] [Google Scholar]
  36. Slater A. F., Swiggard W. J., Orton B. R., Flitter W. D., Goldberg D. E., Cerami A., Henderson G. B. An iron-carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):325–329. doi: 10.1073/pnas.88.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stocks J., Dormandy T. L. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol. 1971 Jan;20(1):95–111. doi: 10.1111/j.1365-2141.1971.tb00790.x. [DOI] [PubMed] [Google Scholar]
  38. Thomas C. E., Aust S. D. Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls. J Biol Chem. 1986 Oct 5;261(28):13064–13070. [PubMed] [Google Scholar]
  39. Turrini F., Arese P., Yuan J., Low P. S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem. 1991 Dec 15;266(35):23611–23617. [PubMed] [Google Scholar]
  40. Weatherall D. J., Abdalla S. The anaemia of Plasmodium falciparum malaria. Br Med Bull. 1982 May;38(2):147–151. doi: 10.1093/oxfordjournals.bmb.a071751. [DOI] [PubMed] [Google Scholar]
  41. Wozencraft A. O., Croft S. L., Sayers G. Oxygen radical release by adherent cell populations during the initial stages of a lethal rodent malarial infection. Immunology. 1985 Nov;56(3):523–531. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES