Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Nov 1;176(5):1273–1281. doi: 10.1084/jem.176.5.1273

Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen

PMCID: PMC2119423  PMID: 1402673

Abstract

The basis of antiviral protection by memory cytotoxic T lymphocytes (CTL) was investigated in vivo and in vitro using lymphocytic choriomeningitis virus (LCMV) and recombinant vaccinia viruses expressing the LCMV-glycoprotein (vacc-GP) or -nucleoprotein (vacc-NP). The widely replicating LCMV with a tendency to persist induced solid long-term protective memory. The poorly replicating vaccinia recombinant viruses revealed in the vaccinated host that the antiviral capacity of the secondary immune T cell response and the protection against lethal LCM was dependent upon the immunizing antigen and its dose. Protection against lethal choriomeningitis is less sensitive to assess memory because it depends upon high levels of CTL precursors (p) and/or on an activated state of memory CTL. In contrast, antiviral protection measured as the capacity of the primed host to reduce virus titers after challenge infection correlated with elevated CTLp frequencies after immunization with live LCMV or recombinant vaccinia virus-expressing the major LCMV epitope. CTLp frequencies were constantly increased up to 70 d for LCMV immune mice, but rapidly decreased a few weeks after immunization with low dose vaccinia recombinant virus. For example, mice primed with 2 x 10(6) plaque- forming units (PFU) of vacc-NP, or 2 x 10(2) PFU, or 2 x 10(6) PFU of vacc-GP were antivirally protected on day 7 but not after day 30 when CTLp could not be measured any longer in vitro. However, greater priming doses of vacc-NP (10(4) or 2 x 10(6) PFU) as well as LCMV (2 x 10(2) PFU) induced elevated levels of CTLp and antiviral protection for 60 d or longer. Adoptive transfer experiments of immune spleen cells into syngeneic recipients without addition of antigen demonstrated that maintenance of the antiviral protective capacity of the transferred cells depended on the presence of viral antigen. Thus, antiviral protection by memory CTL may be rather short-lived since it is based on activated T cells continuously stimulated by persisting antigen. This is best achieved by high immunizing antigen doses yielded either by widely replicating viruses or high doses of poorly replicating recombinant vaccines.

Full Text

The Full Text of this article is available as a PDF (925.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Baenziger J., Hengartner H., Zinkernagel R. M., Cole G. A. Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol. 1986 Apr;16(4):387–393. doi: 10.1002/eji.1830160413. [DOI] [PubMed] [Google Scholar]
  3. Battegay M., Cooper S., Althage A., Bänziger J., Hengartner H., Zinkernagel R. M. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods. 1991 Jun;33(1-2):191–198. doi: 10.1016/0166-0934(91)90018-u. [DOI] [PubMed] [Google Scholar]
  4. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  5. Bennink J. R., Yewdell J. W., Smith G. L., Moller C., Moss B. Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature. 1984 Oct 11;311(5986):578–579. doi: 10.1038/311578a0. [DOI] [PubMed] [Google Scholar]
  6. Beverley P. C. Is T-cell memory maintained by crossreactive stimulation? Immunol Today. 1990 Jun;11(6):203–205. doi: 10.1016/0167-5699(90)90083-l. [DOI] [PubMed] [Google Scholar]
  7. Byrne J. A., Oldstone M. B. Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo. J Virol. 1984 Sep;51(3):682–686. doi: 10.1128/jvi.51.3.682-686.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Camp R. L., Kraus T. A., Birkeland M. L., Puré E. High levels of CD44 expression distinguish virgin from antigen-primed B cells. J Exp Med. 1991 Mar 1;173(3):763–766. doi: 10.1084/jem.173.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carbone F. R., Bevan M. J. Induction of ovalbumin-specific cytotoxic T cells by in vivo peptide immunization. J Exp Med. 1989 Mar 1;169(3):603–612. doi: 10.1084/jem.169.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carbone F. R., Hosken N. A., Moore M. W., Bevan M. J. Class I MHC-restricted cytotoxic responses to soluble protein antigen. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):551–555. doi: 10.1101/sqb.1989.054.01.065. [DOI] [PubMed] [Google Scholar]
  11. Celada F. The cellular basis of immunologic memory. Prog Allergy. 1971;15:223–267. [PubMed] [Google Scholar]
  12. Cerottini J. C., MacDonald H. R. The cellular basis of T-cell memory. Annu Rev Immunol. 1989;7:77–89. doi: 10.1146/annurev.iy.07.040189.000453. [DOI] [PubMed] [Google Scholar]
  13. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol. 1985 Dec;5(12):3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cole G. A., Nathanson N., Prendergast R. A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972 Aug 11;238(5363):335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  15. Cosulich M. E., Rubartelli A., Risso A., Cozzolino F., Bargellesi A. Functional characterization of an antigen involved in an early step of T-cell activation. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4205–4209. doi: 10.1073/pnas.84.12.4205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cunningham A. J., Sercarz E. E. The asynchronous development of immunological memory in helper (T) and precursor (B) cell lines. Eur J Immunol. 1971 Dec;1(6):413–421. doi: 10.1002/eji.1830010602. [DOI] [PubMed] [Google Scholar]
  17. DRESSER D. W. A study of the adoptive secondary response to a protein antigen in mice. Proc R Soc Lond B Biol Sci. 1961 Jul 25;154:398–417. doi: 10.1098/rspb.1961.0039. [DOI] [PubMed] [Google Scholar]
  18. Dunlop M. B., Doherty P. C., Zinkernagel R. M., Blanden R. V. Secondary cytotoxic cell response to lymphocytic choriomeningitis virus II. Nature and specificity of effector cells. Immunology. 1976 Aug;31(2):181–186. [PMC free article] [PubMed] [Google Scholar]
  19. Eichelberger M. C., Wang M. L., Allan W., Webster R. G., Doherty P. C. Influenza virus RNA in the lung and lymphoid tissue of immunologically intact and CD4-depleted mice. J Gen Virol. 1991 Jul;72(Pt 7):1695–1698. doi: 10.1099/0022-1317-72-7-1695. [DOI] [PubMed] [Google Scholar]
  20. Gray D., Leanderson T. Expansion, selection and maintenance of memory B-cell clones. Curr Top Microbiol Immunol. 1990;159:1–17. doi: 10.1007/978-3-642-75244-5_1. [DOI] [PubMed] [Google Scholar]
  21. Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. HOTCHIN J. The biology of lymphocytic choriomeningitis infection: virus-induced immune disease. Cold Spring Harb Symp Quant Biol. 1962;27:479–499. doi: 10.1101/sqb.1962.027.001.046. [DOI] [PubMed] [Google Scholar]
  23. Hany M., Oehen S., Schulz M., Hengartner H., Mackett M., Bishop D. H., Overton H., Zinkernagel R. M. Anti-viral protection and prevention of lymphocytic choriomeningitis or of the local footpad swelling reaction in mice by immunization with vaccinia-recombinant virus expressing LCMV-WE nucleoprotein or glycoprotein. Eur J Immunol. 1989 Mar;19(3):417–424. doi: 10.1002/eji.1830190302. [DOI] [PubMed] [Google Scholar]
  24. Jamieson B. D., Ahmed R. T cell memory. Long-term persistence of virus-specific cytotoxic T cells. J Exp Med. 1989 Jun 1;169(6):1993–2005. doi: 10.1084/jem.169.6.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jamieson B. D., Somasundaram T., Ahmed R. Abrogation of tolerance to a chronic viral infection. J Immunol. 1991 Nov 15;147(10):3521–3529. [PubMed] [Google Scholar]
  26. Johnson E. D., Cole G. A. Functional heterogeneity of lymphocytic choriomeningitis virus-specfic T lymphocytes. I. Identification of effector amd memory subsets. J Exp Med. 1975 Apr 1;141(4):866–881. [PMC free article] [PubMed] [Google Scholar]
  27. Jungi T. W. Immunological memory to Listeria monocytogenes in rodents: evidence for protective T lymphocytes outside the recirculating lymphocyte pool. J Reticuloendothel Soc. 1980 Oct;28(4):405–417. [PubMed] [Google Scholar]
  28. Karupiah G., Coupar B. E., Andrew M. E., Boyle D. B., Phillips S. M., Müllbacher A., Blanden R. V., Ramshaw I. A. Elevated natural killer cell responses in mice infected with recombinant vaccinia virus encoding murine IL-2. J Immunol. 1990 Jan 1;144(1):290–298. [PubMed] [Google Scholar]
  29. Mackay C. R., Marston W. L., Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990 Mar 1;171(3):801–817. doi: 10.1084/jem.171.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  31. Moskophidis D., Assmann-Wischer U., Simon M. M., Lehmann-Grube F. The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. Eur J Immunol. 1987 Jul;17(7):937–942. doi: 10.1002/eji.1830170707. [DOI] [PubMed] [Google Scholar]
  32. Oehen S., Hengartner H., Zinkernagel R. M. Vaccination for disease. Science. 1991 Jan 11;251(4990):195–198. doi: 10.1126/science.1824801. [DOI] [PubMed] [Google Scholar]
  33. Panicali D., Davis S. W., Weinberg R. L., Paoletti E. Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5364–5368. doi: 10.1073/pnas.80.17.5364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Romanowski V., Matsuura Y., Bishop D. H. Complete sequence of the S RNA of lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus. Virus Res. 1985 Sep;3(2):101–114. doi: 10.1016/0168-1702(85)90001-2. [DOI] [PubMed] [Google Scholar]
  35. Roost H. P., Charan S., Zinkernagel R. M. Analysis of the kinetics of antiviral memory T help in vivo: characterization of short-lived cross-reactive T help. Eur J Immunol. 1990 Dec;20(12):2547–2554. doi: 10.1002/eji.1830201204. [DOI] [PubMed] [Google Scholar]
  36. Rosenberg Z. F., Fauci A. S. Immunopathogenic mechanisms of HIV infection: cytokine induction of HIV expression. Immunol Today. 1990 May;11(5):176–180. doi: 10.1016/0167-5699(90)90070-p. [DOI] [PubMed] [Google Scholar]
  37. Sander B., Cardell S., Möller E. Interleukin 4 and interferon gamma production in restimulated CD4+ and CD8+ cells indicates memory type responsiveness. Scand J Immunol. 1991 Mar;33(3):287–296. doi: 10.1111/j.1365-3083.1991.tb01774.x. [DOI] [PubMed] [Google Scholar]
  38. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  39. Schulz M., Aichele P., Vollenweider M., Bobe F. W., Cardinaux F., Hengartner H., Zinkernagel R. M. Major histocompatibility complex--dependent T cell epitopes of lymphocytic choriomeningitis virus nucleoprotein and their protective capacity against viral disease. Eur J Immunol. 1989 Sep;19(9):1657–1667. doi: 10.1002/eji.1830190921. [DOI] [PubMed] [Google Scholar]
  40. Schulz M., Zinkernagel R. M., Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):991–993. doi: 10.1073/pnas.88.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sprent J., Miller J. F. Fate of H2-activated T lymphocytes in syngeneic hosts. III. Differentiation into long-lived recirculating memory cells. Cell Immunol. 1976 Feb;21(2):314–326. doi: 10.1016/0008-8749(76)90059-9. [DOI] [PubMed] [Google Scholar]
  42. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  43. Tew J. G., Kosco M. H., Burton G. F., Szakal A. K. Follicular dendritic cells as accessory cells. Immunol Rev. 1990 Oct;117:185–211. doi: 10.1111/j.1600-065x.1990.tb00573.x. [DOI] [PubMed] [Google Scholar]
  44. Tew J. G., Mandel T. E. Prolonged antigen half-life in the lymphoid follicles of specifically immunized mice. Immunology. 1979 May;37(1):69–76. [PMC free article] [PubMed] [Google Scholar]
  45. Tew J. G., Phipps R. P., Mandel T. E. The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunol Rev. 1980;53:175–201. doi: 10.1111/j.1600-065x.1980.tb01044.x. [DOI] [PubMed] [Google Scholar]
  46. Tsomides T. J., Walker B. D., Eisen H. N. An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11276–11280. doi: 10.1073/pnas.88.24.11276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. VOLKERT M., LARSEN J. H. STUDIES ON IMMUNOLOGICAL TOLERANCE TO LCM VIRUS. 5. THE INDUCTION OF TOLERANCE TO THE VIRUS. Acta Pathol Microbiol Scand. 1965;63:161–171. doi: 10.1111/apm.1965.63.2.161. [DOI] [PubMed] [Google Scholar]
  48. Volkert M., Lundstedt C. The provocation of latent lymphocytic choriomeningitis virus infections in mice by treatment with antilymphocytic serum. J Exp Med. 1968 Feb 1;127(2):327–339. doi: 10.1084/jem.127.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Volkert M., Marker O., Bro-Jorgensen K. Twp populations of T lymphocytes immune to the lymphocytic choriomeningitis virus. J Exp Med. 1974 May 1;139(5):1329–1343. doi: 10.1084/jem.139.5.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wagner H., Hardt C., Bartlett R., Stockinger H., Röllinghoff M., Rodt H., Pfizenmaier K. Frequency analysis of cytotoxic T lymphocyte precursors in chimeric mice. Evidence for intrathymic maturation of clonally distinct self-major histocompatibility complex- and allo-major histocompatiblilty complex-restricted virus-specific T cells. J Exp Med. 1981 Jun 1;153(6):1517–1532. doi: 10.1084/jem.153.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Whitton J. L., Southern P. J., Oldstone M. B. Analyses of the cytotoxic T lymphocyte responses to glycoprotein and nucleoprotein components of lymphocytic choriomeningitis virus. Virology. 1988 Feb;162(2):321–327. doi: 10.1016/0042-6822(88)90471-0. [DOI] [PubMed] [Google Scholar]
  52. Wolcott J. A., Wust C. J., Brown A. Immunization with one alphavirus cross-primes cellular and humoral immune responses to a second alphavirus. J Immunol. 1982 Sep;129(3):1267–1271. [PubMed] [Google Scholar]
  53. Zinkernagel R. M. Antiviral T-cell memory? Curr Top Microbiol Immunol. 1990;159:65–77. doi: 10.1007/978-3-642-75244-5_4. [DOI] [PubMed] [Google Scholar]
  54. Zinkernagel R. M., Welsh R. M. H-2 compatibility requirement for virus-specific T cell-mediated effector functions in vivo. I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D. J Immunol. 1976 Nov;117(5 Pt 1):1495–1502. [PubMed] [Google Scholar]
  55. van der Kwast T. H., Olthof J. G., Benner R. Secondary delayed-type hypersensitivity to sheep red blood cells in mice: a long-lived memory phenomenon. Cell Immunol. 1977 Dec;34(2):385–394. doi: 10.1016/0008-8749(77)90260-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES