Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1992 Nov 1;176(5):1311–1317. doi: 10.1084/jem.176.5.1311

Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions

PMCID: PMC2119436  PMID: 1402677

Abstract

Herein we describe an assay that was developed to quantitate the binding of normal red blood cells (RBC), labeled with carboxy fluorescein diacetate (C-FDA), to rosetting Plasmodium falciparum- infected RBC. The binding of RBC obtained from various animal species or humans to different strains or clones of rosetting P. falciparum- infected RBC was studied. A strain-specific preference of rosetting was observed for either blood group A/AB or B/AB RBC for all parasites tested. The higher affinity of rosette binding of blood group A, B, or AB vs. O RBC was reflected in larger rosettes when a given parasite was grown in RBC of the preferred blood group. The small size of the rosettes formed when P. falciparum was grown in blood group O RBC may be the in vitro correlate of the relative protection against cerebral malaria afforded by belonging to blood group O rather than to blood group A or B. Rosettes of a blood group A-preferring parasite could be completely disrupted by heparin only when grown in blood group O or B RBC, but not when grown in blood group A RBC. Similarly, the rosettes of a blood group B-preferring parasite could be more easily disrupted by heparin when grown in blood group O or A RBC than when grown in blood group B RBC. Several different saccharides inhibited rosetting of group O RBC, including two monosaccharides that are basic components of heparin. The rosetting of the same parasites grown in blood group A or B RBC was less sensitive to heparin and was specifically inhibited only by the terminal mono- and trisaccharides of the A and the B blood group antigens, the H disaccharide, and fucose. Our results suggest that rosetting is mediated by multiple lectin-like interactions, the usage of which rely on the parasite phenotype and whether the receptors are present on the host cell or not.

Full Text

The Full Text of this article is available as a PDF (620.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstee D. J. Blood group-active surface molecules of the human red blood cell. Vox Sang. 1990;58(1):1–20. doi: 10.1111/j.1423-0410.1990.tb02049.x. [DOI] [PubMed] [Google Scholar]
  2. Bruning J. W., Kardol M. J., Arentzen R. Carboxyfluorescein fluorochromasia assays. I. Non-radioactively labeled cell mediated lympholysis. J Immunol Methods. 1980;33(1):33–44. doi: 10.1016/0022-1759(80)90080-0. [DOI] [PubMed] [Google Scholar]
  3. Carlson J., Ekre H. P., Helmby H., Gysin J., Greenwood B. M., Wahlgren M. Disruption of Plasmodium falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. Am J Trop Med Hyg. 1992 May;46(5):595–602. doi: 10.4269/ajtmh.1992.46.595. [DOI] [PubMed] [Google Scholar]
  4. Carlson J., Helmby H., Hill A. V., Brewster D., Greenwood B. M., Wahlgren M. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet. 1990 Dec 15;336(8729):1457–1460. doi: 10.1016/0140-6736(90)93174-n. [DOI] [PubMed] [Google Scholar]
  5. Carlson J., Holmquist G., Taylor D. W., Perlmann P., Wahlgren M. Antibodies to a histidine-rich protein (PfHRP1) disrupt spontaneously formed Plasmodium falciparum erythrocyte rosettes. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2511–2515. doi: 10.1073/pnas.87.7.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. David P. H., Handunnetti S. M., Leech J. H., Gamage P., Mendis K. N. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am J Trop Med Hyg. 1988 Mar;38(2):289–297. doi: 10.4269/ajtmh.1988.38.289. [DOI] [PubMed] [Google Scholar]
  7. Handunnetti S. M., David P. H., Perera K. L., Mendis K. N. Uninfected erythrocytes form "rosettes" around Plasmodium falciparum infected erythrocytes. Am J Trop Med Hyg. 1989 Feb;40(2):115–118. doi: 10.4269/ajtmh.1989.40.115. [DOI] [PubMed] [Google Scholar]
  8. Lundblad A., Hallgren P., Rudmark A., Svensson S. Structures and serological activities of three oligosaccharides isolated from urines of nonstarved secretors and from secretors on lactose diet. Biochemistry. 1973 Aug 14;12(17):3341–3345. doi: 10.1021/bi00741a030. [DOI] [PubMed] [Google Scholar]
  9. Treutiger C. J., Hedlund I., Helmby H., Carlson J., Jepson A., Twumasi P., Kwiatkowski D., Greenwood B. M., Wahlgren M. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. Am J Trop Med Hyg. 1992 May;46(5):503–510. doi: 10.4269/ajtmh.1992.46.503. [DOI] [PubMed] [Google Scholar]
  10. Udomsangpetch R., Wåhlin B., Carlson J., Berzins K., Torii M., Aikawa M., Perlmann P., Wahlgren M. Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J Exp Med. 1989 May 1;169(5):1835–1840. doi: 10.1084/jem.169.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wahlgren M., Carlson J., Udomsangpetch R., Perlmann P. Why do Plasmodium falciparumm-infected erythrocytes form spontaneous erythrocyte rosettes? Parasitol Today. 1989 Jun;5(6):183–185. doi: 10.1016/0169-4758(89)90141-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES