Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jan 2;120(2):301–312. doi: 10.1083/jcb.120.2.301

Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography

PMCID: PMC2119508  PMID: 8421050

Abstract

High voltage electron microscopic tomography was used to determine the organization of the kinetochore plate and its attachment to the underlying chromosome. Six reconstructions were computed from thick sections of Colcemid-treated PtK1 cells and analyzed by a number of computer graphics methods including extensive thin slicing, three- dimensional masking, and volume rendering. When viewed en-face the kinetochore plate appeared to be constructed from a scaffold of numerous 10-20-nm thick fibers or rods. Although the fibers exhibited regions of parallel alignment and hints of a lattice, they were highly variable in length, orientation and spacing. When viewed in stereo, groups of these fibers were often seen oriented in different directions at different depths to give an overall matted appearance to the structure. When viewed "on edge," the plate was 35-40 nm thick, and in thin slices many regions were tripartite with electron-opaque domains, separated by a more translucent middle layer, forming the inner and outer plate boundaries. These domains were joined at irregular intervals. In some slices, each domain appeared as a linear array of 10- 20-nm dots or rods embedded in a less electron-opaque matrix, and adjacent dots within or between domains often appeared fused to form larger blocks. The plate was connected to the underlying chromosome by less densely arrayed 10-20-nm thick fibers that contacted the chromosome-facing (i.e., inner) surface of the plate in numerous patches. These patches tended to be arrayed in parallel rows perpendicular to the long axis of the chromosome. In contrast to connecting fibers, corona fibers were more uniformly distributed over the cytoplasmic-facing (i.e., outer) surface of the plate. When large portions of the reconstructions were viewed, either en-face or in successive slices parallel to the long axis of the chromosome, the edges of the plate appeared splayed into multiple "fingers" that partly encircled the primary constriction. Together these observations reveal that regions of the kinetochore outer plate contain separate structural domains, which we hypothesize to serve separate functional roles. Our three-dimensional images of the kinetochore are largely consistent with the hypothesis that the outer plate is composed of multiple identical subunits (Zinkowski, R. P., J. Meyne, and B. R. Brinkley. 1991. J. Cell Biol. 113:1091-1110).

Full Text

The Full Text of this article is available as a PDF (7.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard D. P., Turner J. N., Frank J., McEwen B. F. A 360 degrees single-axis tilt stage for the high-voltage electron microscope. J Microsc. 1992 Jul;167(Pt 1):39–48. doi: 10.1111/j.1365-2818.1992.tb03217.x. [DOI] [PubMed] [Google Scholar]
  2. Bernat R. L., Delannoy M. R., Rothfield N. F., Earnshaw W. C. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell. 1991 Sep 20;66(6):1229–1238. doi: 10.1016/0092-8674(91)90045-z. [DOI] [PubMed] [Google Scholar]
  3. Brinkley B. R., Cox S. M., Pepper D. A. Structure of the mitotic apparatus and chromosomes after hypotonic treatment of mammalian cells in vitro. Cytogenet Cell Genet. 1980;26(2-4):165–174. doi: 10.1159/000131438. [DOI] [PubMed] [Google Scholar]
  4. Brinkley B. R., Stubblefield E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 1966;19(1):28–43. doi: 10.1007/BF00332792. [DOI] [PubMed] [Google Scholar]
  5. Brinkley B. R., Valdivia M. M., Tousson A., Brenner S. L. Compound kinetochores of the Indian muntjac. Evolution by linear fusion of unit kinetochores. Chromosoma. 1984;91(1):1–11. doi: 10.1007/BF00286479. [DOI] [PubMed] [Google Scholar]
  6. Burton P. R., Hinkley R. E., Pierson G. B. Tannic acid-stained microtubules with 12, 13, and 15 protofilaments. J Cell Biol. 1975 Apr;65(1):227–233. doi: 10.1083/jcb.65.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chrétien D., Metoz F., Verde F., Karsenti E., Wade R. H. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol. 1992 Jun;117(5):1031–1040. doi: 10.1083/jcb.117.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Comings D. E., Okada T. A. Fine structure of kinetochore in Indian muntjac. Exp Cell Res. 1971 Jul;67(1):97–110. doi: 10.1016/0014-4827(71)90625-2. [DOI] [PubMed] [Google Scholar]
  9. Compton D. A., Yen T. J., Cleveland D. W. Identification of novel centromere/kinetochore-associated proteins using monoclonal antibodies generated against human mitotic chromosome scaffolds. J Cell Biol. 1991 Mar;112(6):1083–1097. doi: 10.1083/jcb.112.6.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooke C. A., Bernat R. L., Earnshaw W. C. CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol. 1990 May;110(5):1475–1488. doi: 10.1083/jcb.110.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Earnshaw W. C., Tomkiel J. E. Centromere and kinetochore structure. Curr Opin Cell Biol. 1992 Feb;4(1):86–93. doi: 10.1016/0955-0674(92)90063-i. [DOI] [PubMed] [Google Scholar]
  12. Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. 1972 Jul;36(1):105–117. doi: 10.1016/0022-5193(72)90180-4. [DOI] [PubMed] [Google Scholar]
  13. Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hyman A. A., Mitchison T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature. 1991 May 16;351(6323):206–211. doi: 10.1038/351206a0. [DOI] [PubMed] [Google Scholar]
  15. Jensen C. G., Davison E. A., Bowser S. S., Rieder C. L. Primary cilia cycle in PtK1 cells: effects of colcemid and taxol on cilia formation and resorption. Cell Motil Cytoskeleton. 1987;7(3):187–197. doi: 10.1002/cm.970070302. [DOI] [PubMed] [Google Scholar]
  16. Krishan A. Fine structure of the kinetochores in vinblastine sulfate-treated cells. J Ultrastruct Res. 1968 Apr;23(1):134–143. doi: 10.1016/s0022-5320(68)80037-1. [DOI] [PubMed] [Google Scholar]
  17. Luther P. K., Lawrence M. C., Crowther R. A. A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy. 1988;24(1):7–18. doi: 10.1016/0304-3991(88)90322-1. [DOI] [PubMed] [Google Scholar]
  18. Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989 Nov;109(5):1963–1973. doi: 10.1083/jcb.109.5.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McEwen B. F., Radermacher M., Rieder C. L., Frank J. Tomographic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9040–9044. doi: 10.1073/pnas.83.23.9040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McEwen B. F., Song M. J., Landis W. J. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography. J Comput Assist Microsc. 1991;3(4):201–210. [PubMed] [Google Scholar]
  21. McEwen B., Edelstein S. J. Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol. 1980 May 15;139(2):123–145. doi: 10.1016/0022-2836(80)90300-9. [DOI] [PubMed] [Google Scholar]
  22. Mitchison T. J. Microtubule dynamics and kinetochore function in mitosis. Annu Rev Cell Biol. 1988;4:527–549. doi: 10.1146/annurev.cb.04.110188.002523. [DOI] [PubMed] [Google Scholar]
  23. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  24. Moses M. J., Counce S. J. Electron microscopy of kinetochores in whole mount spreads of mitotic chromosomes from hela cells. J Exp Zool. 1974 Jul;189(1):115–120. doi: 10.1002/jez.1401890110. [DOI] [PubMed] [Google Scholar]
  25. Nicklas R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J Cell Biol. 1989 Nov;109(5):2245–2255. doi: 10.1083/jcb.109.5.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rattner J. B. Organization within the mammalian kinetochore. Chromosoma. 1986;93(6):515–520. doi: 10.1007/BF00386793. [DOI] [PubMed] [Google Scholar]
  27. Rattner J. B. The organization of the mammalian kinetochore: a scanning electron microscope study. Chromosoma. 1987;95(3):175–181. doi: 10.1007/BF00330348. [DOI] [PubMed] [Google Scholar]
  28. Rieder C. L., Alexander S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 1990 Jan;110(1):81–95. doi: 10.1083/jcb.110.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rieder C. L. Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc Rev. 1990;3(2):269–300. doi: 10.1016/0892-0354(90)90005-d. [DOI] [PubMed] [Google Scholar]
  30. Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  31. Ris H., Witt P. L. Structure of the mammalian kinetochore. Chromosoma. 1981;82(2):153–170. doi: 10.1007/BF00286101. [DOI] [PubMed] [Google Scholar]
  32. Roos U. P. Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma. 1973;41(2):195–220. doi: 10.1007/BF00319696. [DOI] [PubMed] [Google Scholar]
  33. Turner J. N., Barnard D. P., Matuszek G., See C. W. High-precision tilt stage for the high-voltage electron microscope. Ultramicroscopy. 1988;26(4):337–343. [PubMed] [Google Scholar]
  34. Woodcock C. L., McEwen B. F., Frank J. Ultrastructure of chromatin. II. Three-dimensional reconstruction of isolated fibers. J Cell Sci. 1991 May;99(Pt 1):107–114. doi: 10.1242/jcs.99.1.107. [DOI] [PubMed] [Google Scholar]
  35. Wordeman L., Steuer E. R., Sheetz M. P., Mitchison T. Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes. J Cell Biol. 1991 Jul;114(2):285–294. doi: 10.1083/jcb.114.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zinkowski R. P., Meyne J., Brinkley B. R. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES